Схема включения MAX660
Существует 2 схемы включения max660, преследующие разные цели:
. • Инвертор входного напряжения Uвых= -Uвх
• Удвоитель входного напряжения Uвых=2*Uвх
Микросхема выпускается в корпусах DIP8 и SO-8. Как видно из представленных схем диапазон входных напряжений по схеме инвертора на Max660 лежит в пределах от 1.5 до 5.5 вольт, а по схеме удвоителя напряжения 2.5-5.5 Вольт.
Принцип преобразования тут емкостной. И для нормальной работы микросхема требует наличия на выводах CAP+ и CAP- (выводы 2 и 4), а так же на выходе конденсаторов емкостью от 100uF. В даташите указывается емкость от 47мкФ, но из их же графиков следует, что лучше ставить конденсаторы емкостью не меньше 100мкф. Лучше поставить 150-200 мкФ танталовых конденсаторов. Использовать бОльшую емкость особого смысла не имеет. Конденсаторы могут быть и не танталовыми, но они должны обладать низким ESR, чтобы иметь возможность очень шустро отдать требуемый ток.
Микросхема может отдать в нагрузку ток в 100mA, что очень даже хорошо. Но проседание выходного напряжения при этом составит 0.65В, что уже не так хорошо. Если требуется ток больше указанного, можно включить две микросхемы «в параллель». При этом емкость используемая для преобразования у каждой микросхемы должна быть своя, т.е по 100-200 мкФ, а выходная емкость общая и равная сумме выходных емкостей отдельных преобразователей, что вполне логично.
Если вам было лень читать много буковок, то можно послушать умного дядю, посмотрев короткое видео:
MAX660 в питании звуковых цепей.
Работа dc-dc преобразователя на MAX660 возможна на двух частотах — 10 и 80 кГц. Первый вариант не интересен, так как лежит в слышимом диапазоне частот.
Хорошая новость в том, что можно заставить микросхему работать на частоте преобразования 80кГц, подав на вывод FC ( вывод 1) В таком случае даташит гарантирует частоту преобразования не ниже 40 кГц, что для нас уже вполне устраивает.
Тактирующие импульсы могут быть поданы и с собственного генератора на ногу OSC (вывод 7 ). К указанному выводу подключен встроенный конденсатор емкостью 15пФ. Подключением внешнего конденсатора можно снизить частоту до требуемого значения.
Вся прелесть заключается в том, что микросхема не дает кучи лишнего шума по цепям питания, как это делает всеми любимая mc34063.
Преобразователь на данной микросхеме прекрасно работает с усилителем для наушников на NE5532, по схеме из статьи: Высококачественный усилитель для наушников на ОУ по разумной цене, даже не смотря на то, что у NE5532 минимальное напряжение питания ±5В.
При помощи микросхемы макс 660 очень удобно делать двухполярное питание из однополярного. Минус заключается в том, что если источником питания служит аккумулятор, то по мере его разряда падает как положительное напряжение питания, так и отрицательное. При использовании литиевого аккумулятора на полном заряде питание составить ±4.2В, а при разряженном ±3.2 вольта.
Хотите больший размах напряжений? -пожалуйста, MAX865 в студию
Генерация отрицательного напряжениясхемаПринцип графика
В электронных схемах нам часто требуется использовать отрицательное напряжение. Например, когда мы используем операционные усилители, нам часто необходимо установить для них отрицательное напряжение. Ниже приведен простой пример положительного напряжения 5 В на отрицательное напряжение 5 В, чтобы объяснить его схему.
Обычно, когда мне нужно использовать отрицательное напряжение, я обычно выбираю специальные микросхемы, генерирующие отрицательное напряжение, но эти микросхемы более дорогие, например ICL7600, LT1054 и т. Д. Ой, чуть не забыл про MC34063. Этот чип используется чаще всего.Что касается схемы генерации отрицательного напряжения 34063, я не буду здесь упоминать в даташите. Пожалуйста, смотрите нас нижеMCUДва типа контуров создания отрицательного давления, обычно используемых в электронных схемах.
Многие современные однокристальные микрокомпьютеры оснащены выходом PWM. Когда мы используем однокристальный микрокомпьютер, PWM часто не используется. Это хороший выбор для создания отрицательного давления.
Вышеупомянутая схема представляет собой простейшую схему генерации отрицательного напряжения. Он использует наименьшее количество оригиналов, нам нужно только предоставить ему прямоугольную волну около 1 кГц, что довольно просто. Здесь следует отметить, что генерирующая способность этой схемы очень мала, и падение напряжения после добавления нагрузки также относительно велико.
Следующая схема была произведена по указанным выше причинам:
Микросхема MAX865
В отличие от 660-ой, dc-dc преобразователь на MAX865 представляет из себя два конвертера. По сути это повышающий и инвертирующий преобразователи в одном корпусе. На выходе микросхемы будет удвоенное положительное и удвоенное отрицательное напряжения. Весьма удобное решение для питания портатива двухполярным напряжением.
Микросхема выпускается в корпусе μMAX — это корпус для поверхностного монтажа с размерами 3×3 мм, не считая выводов. Что еще раз подтверждает, что микросхема созданна для портатива.
Диапазон входных напряжений здесь немного расширен и заключен между 1.5 и 6 вольтами. Соответственно на выходе можно получить двухполярное питание из однополярного напряжением от ±3 до ±12В.
А вот выходной ток у микросхемы не так радует. В даташите заявляют, что микросхема отлично справляется с нагрузкой до 20 мА, хотя и не доходя до такого тока начинаются просадки выходных напряжений, что хорошо видно из графика зависимости выходного напряжения от тока, показанного ниже. Однако максимальный выходной ток заявлен как 100мА, но это ток КЗ.
Выбора частоты преобразования тут не предусмотрено, но производители постарались вывести частоту за пределы слышимого диапазона. Микросхема работает на частотах от 20 до 38 кГц. Видимо под нагрузкой частота проседает.
Получаем отрицательное напряжение
{ads2}Иногда в радиолюбительской практике нужно иметь кроме основного источника питания, имеющего минусовой общий провод, второй источник питания с плюсовым общим проводом, т.е. двухполярное питание, например, для питания ОУ. Для этого нужен дополнительный источник питания, плюсовой провод которого соединён с общим проводом (минусовым) вашего устройства. Каждый решает такую задачу по-своему, обычно это либо дополнительная обмотка\выпрямитель трансформатора, либо вообще отдельный источник питания. Мне было лень заниматся этим, поэтому я сделал минусовое питание из плюсового с помощью недорогой и широкораспространённой LM2576.
Итак, нам понадобится всего несколько деталей:
- Собственно сама LM2576
- Два электролита на вход и выход
- Диод Шоттки на 1а, например 1N5819
- Индуктивность примерно на 100…300мкГн 1а
- Пара резисторов если LM2576-adj
- Парочка керамических конденсаторов на 0,1мкФ
- Возможно ещё керамика 0,1….0,01мкФ, если ваша разводка окажется настолко неудачной, что схема начнёт самовозбуждатся и переводить потребляемую энергию в тепло.
В итоге вы получите источник отрицательного напряжения с общим плюсовым проводом, способный выдать ток до 700мА и напряжением в диапазоне от 1,23в до примерно 20в с защитой от перегрузок по току и от перегрева кристалла.
Почему 2576 ? Потому что я полюбил этот чип за надёжность, низкую стоимость, простоту и удобство.
Ничего изобретать не понадобится, в даташите на LM2576 есть вся необходимая информация, открываем: https://www.national.com/ds/LM/LM2576.pdf и находим на 18й странице нужную нам схему.
Немного на мой взгляд неудачно у них нарисовано, поэтому сделаем зелёным.
Как видите это инвертирующий преобразователь, по буржуйски inverting buck-boost.
Ключ замыкается (биполярный транзистор, коллектор которого — это 1-й вывод LM2576, эмиттер — 2-й вывод), энергия запасается в сердечнике дросселя, затем ключ размыкается, и накопленная энергия через диод шоттки уходит в выходной электролит, цикл повторяется, пока цепь обратной связи не даст команду сбавитьобороты.
{ads1}
Цепь обратной связи (ОС) состоит из делителя R1, R2 для adj-версии микросхемы, а для версии с фиксированным выходным напряжением вывод 4 сразу сажаем на анод диода. Для версии с внутренним делителем, которую мы вдруг захотим включить на большее выходное напряжение, учитываем, что сопротивление внутреннего R2 равно:
3.3V R2 = 1.7k 5V, R2 = 3.1k 12V, R2 = 8.84k 15V, R2 = 11.3k
Выходное напряжение, как обычно, считаем по формуле Uвых = ((R2\R1)+1)*1,23, где 1,23 — это напряжение источника опорного напряжения.
Для R2 = 2 кОм, R1 = 240 рассчётно получается 11,48 в с учётом погрешности (в моём случае получилось 11,4в).
Для тех кто хочет спросить почему на выходе только 700мА, ведь в даташите написано микросхема обеспечивает 3а, отвечу заранее: согласно даташиту ток ключа ограничивается внутренней схемой на уровне примерно 5,8а, а пиковый ток ключа в нашем обратноходовом преобразователе считается по формуле:
если после такого расчёта ваш мозг не аннигилировал в другое измерение то продолжим.
Короче, чтобы не хавать ваш мозг, пиковый ток обратнохода можно примерно прикинуть по формуле: Iпик = 5,5*(Pout)\Vin, где Pout — выходная мощность. Как видите, чем меньше входное напряжение, тем больше пиковый ток, поэтому крайне не рекомендую питать схему от источника менее 10в (даташит говорит что минимальный «drop» равен 4,7в, т.е. при выходном 12,7в минимальное входное будет 8 вольт, если меньше то выходной ключ открывается…. а его нагрузка по постоянному току дросель…. со всеми вытекающими)
Ладно, хватит мудрёных формул, ближе к делу. У меня получилась платка размером 15х34 мм, нарисовал в спринте вот так:
Резисторы делителя 1206, электролиты диаметром 12…13мм, дроссель намотал на колечке Т60 из 52-го материала, особо не думая о количестве витков, просто намотал в 4 жилы проводом 0,3….0,4мм до заполнения, получилось примерно 70..80 витков (200…250мкГн)
Ну а дальше как обычно, в путь: стеклотекстолит, утюг, хлорное железо, паяльник….
Напоследок традиционно о КПД:
Вход 15в 410мА — 6,15Вт потребляемая
Выход 11,4в 360мА — 4,1 Выдаваемая
ток холостого хода около 20…30мА
Соответственно, КПД = 67%, но мне лично уже не важно, лишь бы не мудрить вторую обмотку, второй блок пиатния.
{ads1}