2.1.        Три основные схемы усилителей на транзисторах

Здравствуйте уважаемые читатели сайта . Продолжаем осваивать биполярный транзистор и сегодня мы рассмотрим его работу в режиме усиления на примере простого усилителя звуковой частоты, собранного на одном транзисторе.

В режиме усиления

транзисторы работают в схемах радиовещательных приемников и усилителях звуковой частоты (УЗЧ). При работе используются малые токи в
базовой
цепи транзистора, управляющие большими токами в
коллекторной
цепи. Этим и отличается режим усиления от режима переключения, который лишь открывает или закрывает транзистор под действием напряжения

на базе.

Схема усилителя.

В качестве эксперимента соберем простой усилитель на одном транзисторе и разберем его работу.

В коллекторную цепь транзистора VT1

включим высокоомный электромагнитный телефон
BF2
, между базой и минусом источника питания
GB
установим резистор

, и развязывающий конденсатор
Cсв
, включенный в базовую цепь транзистора.

Конечно, сильного усиления от такого усилителя мы не услышим, да и чтобы услышать звук в телефоне BF1

его придется очень близко преподнести к уху. Так как для громкого воспроизведения звука нужен усилитель как минимум с
двумя-тремя
транзисторами или так называемый
двухкаскадный
усилитель. Но чтобы понять сам принцип усиления, нам будет достаточно и усилителя, собранного на одном транзисторе или
однокаскадном
усилителе.

Усилительным каскадом

принято называть транзистор с резисторами, конденсаторами и другими элементами схемы, обеспечивающими транзистору условия работы как усилителя.

Что такое операционный усилитель

Операционный усилитель (ОУ) англ. Operational Amplifier (OpAmp), в народе – операционник, является усилителем постоянного тока (УПТ) с очень большим коэффициентом усиления. Словосочетание «усилитель постоянного тока» не означает, что операционный усилитель может усиливать только постоянный ток. Имеется ввиду, начиная с частоты в ноль Герц, а это и есть постоянный ток.
Термин «операционный» укрепился давно, так как первые образцы ОУ использовались для различных математических операций типа интегрирования, дифференцирования, суммирования и тд. Коэффициент усиления ОУ зависит от его типа, назначения, структуры и может превышать 1 млн!

Работа схемы усилителя.

При подаче напряжения питания в схему, на базу транзистора через резистор

поступает небольшое отрицательное напряжение 0,1 — 0,2В, называемое
напряжением смещения
. Это напряжение
приоткрывает
транзистор, и через эмиттерный и коллекторный переходы начинает течь незначительный ток, который как бы переводит усилитель в дежурный режим, из которого он мгновенно выйдет, как только на входе появится входной сигнал.

Без начального

напряжения смещения эмиттерный p-n переход будет
закрыт
и, подобно диоду, «
срезать
» положительные полупериоды входного напряжения, отчего усиленный сигнал будет искаженным.

Если на вход усилителя подключить еще один телефон BF1

и использовать его как микрофон, то телефон будет преобразовывать звуковые колебания в переменное напряжение звуковой частоты, которое через конденсатор
Ссв
будет поступать на базу транзистора.

Здесь, конденсатор Ссв

выполняет функцию связующего элемента между телефоном
BF1
и базой транзистора. Он прекрасно пропускает напряжение звуковой частоты, но преграждает путь постоянному току из базовой цепи к телефону
BF1
. А так как телефон имеет свое внутреннее сопротивление (около 1600 Ом), то без этого конденсатора база транзистора через внутреннее сопротивление телефона была бы соединена с эмиттером по постоянному току. И естественно, ни о каком усилении сигнала речи и быть не могло.

Теперь, если начать говорить в телефон BF1

, то в цепи
эмиттер-база
возникнут колебания электрического тока телефона
Iтлф
, которые и будут управлять большим током в коллекторной цепи транзистора. И уже этот усиленный сигнал, преобразованный телефоном
BF2
в звук, мы и будем слышать.

Сам процесс усиления сигнала можно описать следующим образом. При отсутствии напряжения входного сигнала Uвх

, в цепях базы и коллектора текут небольшие токи (прямые участки графиков
а
,
б
,
в
), определяемые напряжением источника питания, напряжением смещения на базе и усилительными свойствами транзистора.

Как только в цепи базы появляется входной сигнал (правая часть графика а

), то соответственно ему начинают изменяться и токи в цепях транзистора (правая часть графиков
б
,
в
).

Во время отрицательных

полупериодов, когда отрицательное входное
Uвх
и напряжение источника питания
GB
суммируются на базе — токи цепей
увеличиваются
.

Во время же положительных

полупериодов, кода напряжение входного сигнала
Uвх
и источника питания
GB
положительны, отрицательное напряжение на базе уменьшается и, соответственно, токи в обеих цепях также
уменьшаются
. Вот таким образом и происходит усиление по напряжению и току.

Если же нагрузкой транзистора будет не телефон а резистор, то создающееся на нем напряжение переменной составляющей усиленного сигнала можно будет подать во входную цепь второго транзистора для дополнительного усиления.

Один транзистор может усилить сигнал в 30 – 50 раз.

На рисунке ниже показана зависимость тока коллектора от тока базы.

Например. Между точками А и Б ток базы увеличился от 50 до 100 мкА (микроампер), то есть составил 50 мкА, или 0,05 mA. Ток коллектора между этими точками возрос от 3 до 5,5 mA, то есть вырос на 2,5 mA. Отсюда следует, что усиление по току составляет: 2,5 / 0,05 = 50 раз.

Точно также работают транзисторы структуры n-p-n

. Но для них полярность включения источника питания, питающей цепи базы и коллектора меняется на
противоположную
. То есть на базу и коллектор подается положительное, а на эмиттер отрицательное напряжения.

Запомните

: для работы транзистора в режиме усиления на его базу, относительно эмиттера, вместе с напряжением
входного сигнала
обязательно подается постоянное
напряжение смещения
, открывающее транзистор.

Для германиевых

транзисторов отпирающее напряжение составляет не более 0,2 вольта, а для
кремниевых
не более 0,7 вольта.

Напряжение смещения на базу не подают лишь в том случае, когда эмиттерный переход транзистора используют для детектирования радиочастотного модулированного сигнала.

Стабилизация рабочей точки транзистора

Серьезный недостаток схемы на рис. 1.(б) состоит в том, что напряжение коллектора в режиме покоя целиком зависит от величины hFE транзистора, в то время как численные значения этого параметра имеют большой разброс у различных экземпляров транзисторов одного типа. Например, при типичном значении hFE для транзистора ВС 107, равном 200, изготовители указывают, что оно может изменяться в пределах от 90 до 450. Изменение hFE сдвигает рабочую точку по постоянному току. Например, если коэффициент hFE равен 100 вместо 200, то при этом потечет ток коллектора, равный 0,5 мА, а не 1 мА, и падение напряжения на RL составит только 2,35 В вместо 4,7 В. Увеличение напряжения на коллекторе в режиме покоя означает, что выходное напряжение в схеме может изменяться в сторону увеличения только на 2 В, а не на 4 В (возможно изменение выходного напряжения в сторону уменьшения до 6 В, но от этого мало пользы, когда положительные приращения ограничены).

Последствия использования транзистора с hFE = 400 еще более серьезны. В этом случае ток коллектора удвоится до 2 мА. Простое вычисление показывает, что все 9 В питания будут падать на резисторе RL. Говорят, что транзистор находится в насыщении. Практически между коллектором и эмиттером остается небольшое напряжение порядка 0,2 В. Любое дальнейшее увеличение тока базы почти ни к чему не приводит; действительно, падение напряжения на RL не может превышать Vcc Поскольку при насыщении транзистора потенциал коллектора фактически равен потенциалу земли, схема теперь не пригодна для линейного усиления: невозможны изменения выходного напряжения в сторону уменьшения.

Возвращаясь к линейному усилителю на рис. 1.(б), можно сказать, что необходимо некоторое усовершенствование схемы, чтобы повысить ее устойчивость к изменениям hFE. Даже если бы у нас была возможность отбирать транзисторы с hFE = 200, а это очень дорого при массовом выпуске схем, hFE увеличивается с ростом температуры, так что схема все равно не была бы надежной. На рис. 2. показано очень простое, но эффективное улучшение. Вместо того, чтобы подключать резистор RB непосредственно к Vcc, мы, уменьшив сопротивление вдвое, подключим его к коллектору (VCE≈Vcc/2). Теперь, благодаря этому, ток базы в режиме покоя зависит от коллекторного напряжения в режиме покоя. Даже при увеличении hFE транзистор не может попасть в насыщение: если коллекторное напряжение падает, то также падает ток базы, «придерживая» коллекторный ток. И наоборот, если hFE уменьшается, коллекторное напряжение в режиме покоя возрастает, увеличивая ток IB.

Ток базы определяется теперь соотношением

IB=VCE/RB

и, как и прежде,

VCE=Vcc-hFEIBRL

Объединяя эти равенства, получим

VCE=Vcc/(1+hFERL/RB)

Если RL и RB имеют значения, указанные на рис. 2, и hFE = 100, то VCE≈6 В; если hFE = 400, то VCE≈3 В. Хотя здесь все еще положение рабочей точки меняется, это не существенно, пока для получения больших сигналов не требуется иметь возможно большие пределы изменения выходного напряжения. Схема, приведенная на рис. 2., будет работать при изменении параметров транзисторов в очень широком диапазоне и является полезным усилителем напряжения общего назначения. Принцип построения схемы с автокомпенсацией изменений hFE является просто примером отрицательной обратной связи, которая представляет собой одно из самых важных понятий в электронике.

Идеальная и реальная модель операционного усилителя

Для того, чтобы понять суть работы ОУ, рассмотрим его идеальную и реальную модели.

1) Входное сопротивление идеального ОУ бесконечно большое.

В реальных ОУ значение входного сопротивления зависит от назначения ОУ (универсальный, видео, прецизионный и т.п.) типа используемых транзисторов и схемотехники входного каскада и может составлять от сотен Ом и до десятков МОм. Типовое значение для ОУ общего применения — несколько МОм.

2) Второе правило вытекает из первого правила. Так как входное сопротивление идеального ОУ бесконечно большое, то входной ток будет равняться нулю.

На самом же деле это допущение вполне справедливо для ОУ с полевыми транзисторами на входе, у которых входные токи могут быть меньше пикоампер. Но есть также ОУ с биполярными транзисторами на входе. Здесь уже входной ток может быть десятки микроампер.

3) Выходное сопротивление идеального ОУ равняется нулю.

Это значит, что напряжение на выходе ОУ не будет изменяться при изменении тока нагрузки. В реальных ОУ общего применения выходное сопротивление составляет десятки Ом (обычно 50 Ом). Кроме того, выходное сопротивление зависит от частоты сигнала.

4) Коэффициент усиления в идеальном ОУ бесконечно большой. В реальности он ограничен внутренней схемотехникой ОУ, а выходное напряжение ограничено напряжением питания.

5) Так как коэффициент усиления бесконечно большой, следовательно, разность напряжений между входами идеального ОУ равняется нулю. Иначе если даже потенциал одного входа будет больше или меньше хотя бы на заряд одного электрона, то на выходе будет бесконечно большой потенциал.

6) Коэффициент усиления в идеальном ОУ не зависит от частоты сигнала и постоянен на всех частотах. В реальных ОУ это условие выполняется только для низких частот до какой-либо частоты среза, которая у каждого ОУ индивидуальна. Обычно за частоту среза принимают падение усиления на 3 дБ или до уровня 0,7 от усиления на нулевой частоте (постоянный ток).

Схема простейшего ОУ на транзисторах выглядит примерно вот так:

Питание операционных усилителей

Если выводы питания не указаны, то считается, что на ОУ идет двухполярное питание +E и -E Вольт. Его также помечают как +U и -U, VCC и VEE, Vc и VE. Чаще всего это +15 и -15 Вольт. Двухполярное питание также называют биполярным питанием. Как это понять — двухполярное питание?

Давайте представим себе батарейку

Думаю, все вы в курсе, что у батарейки есть «плюс» и есть «минус». В этом случае «минус» батарейки принимают за ноль, и уже относительно нуля считают напряжение батарейки. В нашем случае напряжение батарейки равняется 1,5 Вольт.

А давайте возьмем еще одну такую батарейку и соединим их последовательно:

Итак, общее напряжение у нас будет 3 Вольта, если брать за ноль минус первой батарейки.

А что если взять на ноль минус второй батарейки и относительно него уже замерять все напряжения?

Вот здесь мы как раз и получили двухполярное питание.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]