Параллельное и последовательное соединение конденсаторов, схемы, расчет

Прежде чем рассказывать про актуальность установки конденсатора для сабвуфера в транспортном средстве, следует задать автолюбителю вопрос – а зачем вообще они монтируют в свои автомобили подобное оборудование? Ответ очевиден: чтобы наслаждаться максимально возможным звучанием своих любимых композиций, которым добавляет дополнительной «сочности» проигрывание их в условиях очень ограниченного пространства.

Казалось бы, что для этого нужно? Купить хорошую магнитолу, усилитель и колонки. Но, как показывает практика, данного набора может не хватить для получения запланированного результата. Почему?

Что такое конденсатор и его основные характеристики

Конденсатор — это радиодеталь, которая работает как накопитель электрической энергии. Чтобы понятнее было, как он работает, его можно представить как своего рода небольшой аккумулятор. Обозначается двумя параллельными чёрточками.

Обозначения различных типов конденсаторов на схемах. Чаще всего из строя выходят электролитические конденсаторы, так что стоит запомнить их обозначение

Основная характеристика конденсатора любого типа — ёмкость. Это то количество заряда, которое он в состоянии накопить. Измеряется в Фарадах (сокращенно просто буква F или Ф), а вернее, в более «мелких» единицах:

  • микрофарадах — мкФ это 10-6 фарада,
  • нанофарадах — нФ это 10-9 фарада;
  • пикофарадах — пФ это 10-12 фарада.

Вторая важная характеристика — номинальное напряжение. Это то напряжение, при котором гарантирована длительная безотказная работа. Например, 4700 мкФ 35 В, где 35 В — это номинальное напряжение 35 вольт.

У крупных по размеру конденсаторов, ёмкость и напряжение указаны на корпусе

Нельзя ставить конденсатор в цепь с более высоким напряжением чем то, которое на нём указано. В противном случае он быстро выйдет из строя.

Можно использовать конденсаторы на 50 вольт вместо конденсаторов на 25 вольт. Но это порой нецелесообразно, так как те, которые рассчитаны на более высокое напряжение, дороже, да и габариты у них больше.

Подключение сабвуфера к магнитоле

Подключать сабвуфер к магнитоле необходимо только через усилитель. Так как встроенной мощности магнитолы не хватит для правильной работы сабвуфера и нормального баса вы не получите. Цепочка подключения простая: магнитола-усилитель-сабвуфер. Магнитола передает сигнал на усилитель. Усилитель в свою очередь этот сигнал усиливает и отправляет его на сабвуфер.

Для чего нужен усилитель?

Усилитель используется для увеличения запаса по громкости, снижения искажений и повышения качества звучания музыки. Встроенного усилителя магнитолы не хватит для раскачки тяжелого низкочастотного динамика, от чего будут появляться большие искажения, уровень громкости будет низким и с большой вероятностью сабвуфер может выйти из строя или попросту «сгореть».

Если у вас активный сабвуфер, то дополнительный усилитель вам не потребуется, потому что он уже встроен в корпус саба (). Для пассивного сабвуфера придется подобрать усилитель (как правильно это сделать читайте на этой странице).

Параллельное и комбинированное соединение

Выделяются другие способы соединения, а именно комбинированное и параллельное подключение конденсаторов. Для них справедливы иные физические законы.


Параллельные конденсаторы

Энергия конденсатора

Напряжение всей группы при параллельном соединёнии конденсаторов равно вольтажу самого наименьшего из них. Т.е., если имеется цепь из трёх конденсаторов на 16, 25 и 50 В, то максимум, который на них можно подать, это 16 В. В такой схеме к каждой отдельной ёмкости будет приложено полное напряжение источника питания.

Ёмкость такой батареи складывается. Вызвано это виртуальным сложением площадей обкладок всех отдельных конденсаторов. На языке физики это выглядит так:

Cобщ.пар = С1 + С2 + … + Сn.

Зачем нужно такое соединение? Оно используется для увеличения ёмкости конденсаторов, например, в высоковольтной части сварочных инверторов и многих мощных блоках питания.

Дополнительная информация. Параллельное соединение позволяет снизить общее внутреннее сопротивление сборки, следовательно, и её нагрев. Тем самым можно увеличить срок службы ёмкости.

Комбинированное (смешанное) соединение наиболее сложное. В нём встречаются как последовательные, так и параллельные элементы. Расчёт параметров таких схем даётся с опытом. Для простоты его принято изучать по треугольнику, разбивая на более простые части.


Смешанное соединение

Из схемы очевидно, что конденсаторы C1 и C2 включены последовательно. Их общую ёмкость можно рассчитать по вышеописанной формуле – Cобщ.посл. Далее схема упрощается. Здесь уже имеются два параллельных конденсатора Cобщ.посл и C3. Вычисляется по вышестоящей формуле Cобщ.пар. В итоге сложный для восприятия элемент цепи превращается в один эквивалентный конденсатор. Данная методика описывает алгоритм упрощения, с помощью которого можно рассчитывать гораздо более сложные конденсаторные фигуры (квадрат, куб и т.п.).

Падение напряженности и общая емкость

Ёмкость конденсатора – это величина, определяющая количество заряда, который он способен в себе сохранить. Выражение имеет следующий вид:

C = q/U.

Здесь q – заряд, накопленный между обкладками конденсатора, U – напряжение к ним приложенное.

Вышеописанная формула представляет общий случай. На практике при расчете ёмкости конденсатора следует учитывать ряд других переменных:

C = E0ES/d,

где:

  • E0 – электрическая постоянная, равная 8,85*10-12 Ф/м,
  • E – диэлектрическая проницаемость среды, в которой располагаются обкладки конденсатора,
  • S – их площадь пересечения,
  • d – расстояние между обкладками.

Стандартная модель конденсатора имеет следующий вид.


Модель конденсатора

Обкладки чаще всего изготовлены из тонкого листового алюминия и скручены в рулон. Делается это для увеличения их площади, ведь так ёмкость конденсатора становится существенно больше.

От выбора диэлектрика, устанавливаемого производителем между обкладками конденсатора, зависит номинальное и максимальное напряжение прибора. Это, в свою очередь, определяет его сферу применения. Если к обкладкам приложить чрезмерную разность потенциалов, то напряжённость поля между ними превысит допустимый уровень, и произойдёт пробой диэлектрика. Подобная ситуация особенно пагубно влияет на электролитические конденсаторы и ионисторы. В случае их пробоя прибор частично или полностью теряет способность накапливать заряд и в дальнейшем становится непригодным для работы.

При последовательном и параллельном включении разных конденсаторов существенно изменяются их характеристики. Данное свойство этих деталей активно используется инженерами-электронщиками и радиолюбителями. Знание принципов подключения позволяет им более продуктивно разрабатывать новые устройства.

Что он из себя представляет и как работает

В самом простейшем случае конденсатор состоит из двух токопроводящих пластин (обкладок), разделённых слоем диэлектрика.

Между обкладками находится слой диэлектрика — материала плохо проводящего электрический ток

На пластины подаётся постоянный или переменный ток. Вначале, пока энергия накапливается, потребление энергии конденсатором высокое. По мере «наполнения» ёмкости оно снижается. Когда заряд набран полностью, токопотребления вообще нет, источник питания как бы отключается. В это время конденсатор сам начинает отдавать накопленный заряд. То есть, он на время становится своеобразным источником питания. Поэтому его и сравнивают с аккумулятором.

Сабвуфер

Сабвуфер

Сабвуфером или басовиком называется динамик, воспроизводящий низкие частоты, басы. Конструкция басовика такая, что звучание низов получается глубоким и сочным

Немаловажное значение имеет и установка саба — операция, которую доверяют специалистам

Виды

Басовики принято делить на два вида:

  • Пассивные, которые не подразумевают встроенного в них усилителя и фильтра. Они в обязательном порядке требуют соединения с дополнительным усилителем;
  • Активные сабвуферы, напротив, подразумевают встроенный усилитель и фильтры, но, все же, дополнительный усилитель и им не помеха.

Схема подключения усилителя, сабвуфера и конденсатора

Типы коробов для басовика

Принято различать следующие типы:

  • Наиболее популярным считается тип ящика ЗЯ или закрытый ящик. Это герметичный короб, которому отдает предпочтение большая часть покупателей по причине относительной простоты разработки и конструкции;
  • Не менее популярен ФИ или фазоинвертор. Получили такие короба распространение в последнее время благодаря внедрению компьютерного ПО в расчетах. ФИ уникален тем, что помогает динамику воспроизводить низкие частоты. В этом случае, короб как бы становится источником звука. ФИ корпуса выдают больше баса при меньшей мощности, чем ЗЯ;

ФИ короб

  • Изобарическая конструкция, представляющая корпус, где установлен не один, а два излучателя. Они идентичны и функционируют, как один динамик;
  • Бандпасс короб – популярен в среде профессионалов. Представляет собой корпус, состоящий из двух камер. Одна из камер полностью герметична, другая – сделана как ФИ. Такая конструкция обеспечивает очень качественный низкий бас.

Где и для чего используются

Как уже говорили, сложно найти схему без конденсаторов. Их применяют для решения самых разных задач:

  • Для сглаживания скачков сетевого напряжения. В таком случае их ставят на входе устройств, перед микросхемами, которые требовательны к параметрам питания.
  • Для стабилизации выходного напряжения блоков питания. В таком случае надо искать их перед выходом.


    Часто можно увидеть электролитические цилиндрические конденсаторы

  • Датчик прикосновения (тач-пады). В таких устройствах оной из «пластин» конденсаторов является человек. Вернее, его палец. Наше тело обладает определённой проводимостью. Это и используется в датчиках прикосновения.
  • Для задания необходимого ритма работы. Время заряда конденсаторов разной ёмкости отличается. При этом цикл заряд/разряд конденсатора остаётся величиной постоянной. Это и используется в цепях, где надо задавать определённый ритм работы.
  • Ячейки памяти. Память компьютеров, телефонов и других устройств — это огромное количество маленьких конденсаторов. Если он заряжен — это единица, разряжен — ноль.
  • Есть стартовые конденсаторы, которые помогают «разогнать» двигатель. Они накапливают заряд, потом резко его отдают, создавая требуемый «толчок» для разгона мотора.
  • В фотовспышках. Принцип тот же. Сначала накапливается заряд, затем выдаётся, но преобразуется в свет.

Конденсаторы встречаются часто и область их применения широка. Но надо знать как правильно их подключить.

Как выбрать усилитель

Они различаются по количеству (1-, 2-х, 3-х, 4-х, 5-ти, 6-ти канальные) каналов и классом (АВ и D). Класс АВ – аналоговые аппараты, с высокими показателями мощности, но незначительным коэффициентом полезного действия, который соответствовал бы запасу мощность. Класс D – цифровые аппараты с высокими показателями коэффициента полезного действия и большим запасом мощности, но не всегда они могут похвастаться отменным качеством.1-канальные аппараты Моноблоки, как их еще называют, используются для сабвуферов, так как работают на низкой нагрузке (1-2 Ом)

Они представлены чаще всего в классе D, так как для сабвуфера важно не качество, а мощь звука. Они оснащены развитым кроссовером низкочастотного диапазона и наружным регулятором громкости.2-х канальные Их применяют для подключения пары колонок или соединения сабвуфера при помощи мостового соединения

Если мощность позволяет их также можно подключить по катушке на канал автоусилителя.3-х канальные На сегодняшний день используются крайне редко, так как их вытеснили четырех канальные аппараты. Третий канал применялся для подключения саба.4-х канальные Самые популярные и распространенные во всем мире. Применяются для усиления мощности в различных вариантах: подсоединение к четырем динамикам, к двум динамиков и одному сабвуфера или двум сабвуферов. Универсальность их применения и обуславливает их востребованность.5-ти канальные Применяется для повышения мощи четырех каналов передней и боковой акустики и одного сабвуфера. Это экономный вариант, включающий в себя усиление всех составляющих аудиосистемы в автомобиле, к тому же компактные размеры позволяют значительно сэкономить место.6-ти канальные Применяются крайне редко, так как невостребованны обычными потребителями предпочитающие более простые автомобильные аудиосистемы.

Электрическая емкость

При соединении приборов для конденсации заряда, как правило, техника интересует электрическая емкость, которая получится в итоге.

Электроемкость показывает способность двухполюсника накапливать в себе заряд и измеряется в фарадах. Может показаться, что чем выше это значение, тем лучше, но на практике не существует возможности создать все возможные на свете емкости, более того, часто это и не нужно, так как во всех приборах, использующихся повседневно, применяются стандартные приборы для конденсации.

Можно соединить несколько приборов для конденсации в цепь, создав одну конденсирующую емкость, при этом значение характерной величины будет зависеть от типа подключения, и для его расчета есть давно известные формулы.

Подключение однофазного двигателя

Для подключения асинхронного двигателя в однофазную цепь обычно используется напряжение 220 В. Но для запуска необходимо создать вращательный момент смещения ротора. С этой целью применяется пусковая обмотка, которая является дополнительной и функционирует только при запуске. На ней при помощи конденсатора задается смещение фазы.

Емкость выбирается по следующему принципу. Общая емкость (рабочая и пусковая) на 100 Вт мощности составляет приблизительно 1 мкФ. Если необходимо подобрать конденсаторы для запуска электродвигателя мощностью 1,5 кВт, то ее достаточно легко рассчитать: 1,5 х 1000 : 100 х 1 = 15 мкФ. Таким образом, чтобы подключить однофазный асинхронный двигатель мощностью 1,5 кВт, необходимо использовать рабочий и пусковой конденсатор общей емкостью 15 мкФ.

Подобные двигатели имеют несколько режимов работы:

  • Подключаемая дополнительная обмотка к пусковому конденсатору. Емкость подбирается из соображений 70 мкФ на киловатт мощности.
  • Дополнительная обмотка, задействована на всем периоде работы совместно с рабочим конденсатором, емкость около 30 мкФ.
  • Подключение двух типов конденсаторов одновременно.

Как правильно соединять конденсаторы

Чтобы узнать, как подключить конденсатор правильно, нужно разобраться, к какому именно типу он относится. Данных электронных приборов существует огромное множество. Все конденсаторы подразделяются на две группы:

  • полярные (электролитические) – подключая их, необходимо учитывать, где у детали плюсовой, а где минусовой контакт;
  • неполярные (все остальные) – эти конденсаторы способны работать от переменного тока, у них не бывает положительных и отрицательных клемм.

Затем нужно учесть конструкцию электронного компонента. С этой точки зрения конденсаторы могут быть:

  • Выводными. Подключаются к плате с помощью тонких медных ножек, покрытых (лужёных) для защиты слоем припоя.
  • Для поверхностного монтажа (SMD). В основном применяются в компактной электронике. Очень миниатюрны, часто в поперечнике не превышают 1 мм.

Также важно принять во внимание рабочее напряжение конденсатора. Это особенно принципиально для электролитических приборов данного типа, ведь при превышении их номинального вольтажа они, вероятнее всего, взорвутся, разбрызгивая во все стороны кипящий электролит.

Важно! На крышке электролитического конденсатора имеются две насечки. Эти слабые места служат для мгновенной разгерметизации изделия в случае избыточного внутреннего давления. При ремонте и наладке оборудования следует избегать направленности насечек на лицо или одежду. При внештатной ситуации с их стороны может брызнуть горячий электролит.

Не менее критичен порог максимального напряжения и для прочих видов конденсаторов, особенно имеющих мелкие габариты и не способных длительно выдерживать перегрузки.

Последний, но не наименее важный фактор, который следует учесть при соединении конденсаторов, – это их ёмкость. Она измеряется в микрофарадах (в честь Майкла Фарадея). Это их главная характеристика, поэтому конденсаторы часто называют электрическими ёмкостями. В некоторых электронных устройствах этот параметр может существенно отклоняться как в меньшую, так и в большую сторону. В других – недопустимо погрешность и на 1 %.

Схема подключения пускового и рабочего конденсатора

Комбинированная схема с двумя конденсаторами Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим. В любой схеме очень важно правильно подключить именно конденсатор.


Когда ротор находится в неподвижном состоянии, эти поля приводят к появлению равных по модулю, но разнонаправленных моментов. Во-вторых, и самое главное — автор на практике убедился, что даже предельно точный расчет не является гарантией корректной работы движка.


Последняя имеет меньший размер и является пусковой. Положение контактов в распределительной коробке трехфазного двигателя Подключение трехфазного двигателя по схеме звезда Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме звезда При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. Ставить один или целую сборку из нескольких образцов с разными номиналами — кому как удобнее.


В идеале они должны быть равны между собою, если и есть небольшие различия процентов 30 , то это не идеал, но всё-таки хорошо. По возможности лучше применить ее, так как двигатель будет терять мощность в меньшем количестве, а напряжение по обмоткам всюду будет равно В.

Схемы подключения


В этом случае для подключения двигателя по схеме «треугольник» необходимо вывести в коробку недостающие концы обмоток С4, С5, С6. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах. Это же касается и организации реверсирования двигателя.

Так будет надежней. Редактировал А. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается.

Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая — напротяжении всей работы двигателя. Схема однофазного электродвигателя представлена на рисунке 1. А оставшиеся 2 конца присоединить к электропитанию Вольт. Для достижения максимального значения пускового момента, требуется круговое магнитное поле, которое выполняет вращение. Как подключить двигатель от старой стиральной машины через конденсатор или без него

Нет конденсатора нужного номинала: что делать

Очень часто начинающие домашние мастера, обнаружив поломку прибора, стараются самостоятельно обнаружить причину. Увидев сгоревшую деталь, они стараются найти подобную, а если это не удаётся, несут прибор в ремонт. На самом деле, не обязательно, чтобы показатели совпадали. Можно использовать конденсаторы меньшего номинала, соединив их в цепь. Главное – сделать это правильно. При этом достигается сразу 3 цели – поломка устранена, приобретён опыт, сэкономлены средства семейного бюджета.

Попробуем разобраться, какие способы соединения существуют и на какие задачи рассчитаны последовательное и параллельное соединение конденсаторов. Часто без соединения конденсаторов в батарею не обойтись. Главное – сделать это правильно

Рекомендации по подключению

  1. Подключать систему допускается в схемы любых мощностей. Даже в тех случаях, когда работает один усилитель встроенный в головной прибор. Но при монтаже конденсатора в аудиосистему, оборудованную усилителем внешним, первым делом надо начинать с минимальной мощности системы (от 250 до 300 Вт.).
  2. Такое устройство не обязательно подсоединять только в звуковую систему, обладающую специальным аккумулятором. Просто подобный аккумулятор «звуковой» может быстро снабжать током и так же быстро разгружать сеть автомобиля.
  3. Если собираетесь самостоятельно подсоединять устройство, лучше иметь защитные схемы. Также, следует иметь под рукой приборы, контролирующие состояние бортовой сети.

Обязательно руководствуйтесь схемой при подсоединении элементов. На ней есть наглядные рисунки о местоположении электрических цепей. Вся важная информация тоже присутствует на схеме.

Соединение конденсаторов в батарею: способы выполнения

Существует 3 способа соединения, каждый из которых преследует свою определённую цель:

  1. Параллельное – выполняется в случае необходимости увеличить ёмкость, оставив напряжение на прежнем уровне.
  2. Последовательное – обратный эффект. Напряжение увеличивается, ёмкость уменьшается.
  3. Смешанное – увеличивается как ёмкость, так и напряжение.

Теперь рассмотрим каждый из способов более подробно.

Параллельное соединение: схемы, правила

На самом деле всё довольно просто. При параллельном соединении расчёт общей ёмкости можно вычислить путём простейшего сложения всех конденсаторов. Итоговая формула будет выглядеть следующим образом: Собщ= С₁ + С₂ + С₃ + … + Сn. При этом напряжение на каждом их элементов будет оставаться неизменным: Vобщ= V₁ = V₂ = V₃ = … = Vn.

Получается, что подобный монтаж подразумевает подключение всех пластин конденсаторов к точкам питания. Такой способ встречается наиболее часто. Но может произойти ситуация, когда важно увеличить напряжение. Разберёмся, каким образом это сделать.

Последовательное соединение: способ, используемый реже

При использовании способа последовательного подключения конденсаторов напряжение в цепи возрастает. Оно складывается из напряжения всех элементов и выглядит так: Vобщ= V₁ + V₂ + V₃ +…+ Vn. При этом ёмкость изменяется в обратной пропорции: 1/Собщ= 1/С₁ + 1/С₂ + 1/С₃ + … + 1/Сn. Рассмотрим изменения ёмкости и напряжения при последовательном включении на примере.

Дано: 3 конденсатора с напряжением 150 В и ёмкостью 300 мкф. Подключив их последовательно, получим:

  • напряжение: 150 + 150 + 150 = 450 В;
  • ёмкость: 1/300 + 1/300 + 1/300 = 1/С = 299 мкф.

Выполняют такое соединение в том случае, если есть опасность пробоя диэлектрика конденсатора при подаче напряжения в цепь. Но ведь существует и ещё один способ монтажа.

Полезно знать! Применяют также последовательное и параллельное соединение резисторов и конденсаторов. Это делается с целью снижения подаваемого на конденсатор напряжения и исключения его пробоя. Однако следует учитывать, что напряжения должно быть достаточно для работы самого прибора.

Смешанное соединение конденсаторов: схема, причины необходимости применения

Такое подключение (его ещё называют последовательно-параллельным) применяют в случае необходимости увеличения, как ёмкости, так и напряжения. Здесь вычисление общих параметров немного сложнее, но не настолько, чтобы нельзя было разобраться начинающему радиолюбителю.

Составим алгоритм вычислений.

  • всю схему нужно разбить на отдельные части, высчитать параметры которых просто;
  • высчитываем номиналы;
  • вычисляем общие показатели, как при последовательном включении.

Идеальное сочетание

Как правильно самостоятельно подключить сигнализацию к центральному замку автомобиля

Как и говорилось выше, автомобильная акустика имеет право так называться, если в ней задействовано трио (саб, усилок и конденсатор). Попробуем разобраться в том, какое сочетание можно назвать идеальным.

Басовик Мистери MJB 12, усилитель Сони XM-504Z и конденсатор Стингер SPC111

Мощное трио, которое способно обеспечить идеальный звук. При этом все в бюджетном варианте и платить не надо лишнего.

Подбор усилителя, сабвуфера и конденсатора

Технические характеристики басовика

Корпус Мистери MJB 12Высококачественный МДФ
ДиффузорВысококачественный хромированный инжекционного литья
ПодвесБутилкаучук
Магнит/магнитная система — вес40 унций/80 унций
Звуковая катушкаАлюминиевая на 2 дюйма, покрыта картоном
Габариты корпуса, мм450/418/367
Пиковая мощность, Вт250-500
Примерная стоимость4-5 тысяч рублей

Технические характеристики усилителя Сони XM 504Z

Габариты, мм350/233/55
Пиковая мощность, Ом/Вт4/100 – 2/125 – 1/250
Каналы, кол-во4/3
Источник питанияПолевые МОП тразисторы
Примерная цена3-4 тысячи рублей

Технические характеристики конденсатора Стингер 111

Емкость, фарад1
Диапазон напряжения, В16-20
Внутреннее сопротивление, мОм/Гц1,5/120
ВольтметрИмеется цифровой/LED-дисплей красный/3 сегмента/автовыключение и включение
Диаметр, мм75
Высота, мм250
Цвет корпусасерый

Ток при последовательном соединении конденсаторов

Электрический ток бывает двух видов: постоянным и переменным. Для работы ёмкостей это имеет большое значение.

Конденсатор и постоянный ток

Маркировка танталовых smd конденсаторов

Постоянный ток через конденсатор не проходит вообще. Справедливо это и для линейки из последовательно соединённых ёмкостей. Объясняется такой эффект опять же конструкцией самого электронного прибора. Конденсатор имеет две металлические обкладки. В простых электролитических приборах они сделаны из алюминиевой фольги. Между ними расположен тонкий слой диэлектрика (оксид алюминия). Если приложить к обкладкам разность потенциалов (напряжение), то ток потечёт, но только очень короткое время, пока конденсатор полностью ни зарядится. Далее движение носителей заряда прекратится, т.к. они не смогут пройти через диэлектрик. В этот момент можно сказать, что электрический ток равен нулю, и конденсатор его не пропускает.

Конденсатор и переменный ток

При переменном токе носители заряда периодически меняют своё направление. В случае с бытовой сетью изменение происходит 50 раз в секунду. Поэтому говорят, что частота тока в розетке равна 50 Гц.

Важно! Конденсаторы способны накапливать и длительно удерживать заряд. При работе с ёмкостями, заряженными от сети 220 В, их всегда следует разряжать сопротивлением в 100-1000 ом. Несоблюдение правила однажды приведёт к неприятному удару током.

Конденсатор определённо пропустит переменный ток, но не факт, что весь. Количество носителей заряда, которые смогут пройти через этот электронный прибор, зависит от ёмкости конденсатора, приложенного к нему напряжения и частоты смены направления зарядов. Математически это выражается так:

I = 2pfCU.

Здесь I – это электрический ток с частотой f, проходящий через конденсатор ёмкостью C, если к его обкладкам приложить напряжение U. 2 – просто число, а p = 3.14.

Такая способность конденсаторов ограничивать переменный ток широко применяется в аудиотехнике для построения различных звуковых фильтров. Изменяя ёмкость, можно влиять на частоту сигнала, которую она пропускает.

Фильтр на основе ёмкости

Как исключить дополнительную нагрузку на проводку автомобиля

У автоконденсаторов есть один серьезный недостаток: способность к саморазряду. Этот вид электрических устройств плохо влияет на автомобильный аккумулятор. Особенно, если их много и на улице холодная зима. Для решения данной проблемы на рынке есть множество устройств, которые подключаются лишь при появлении напряжения на один клемм.

Очень удобной функцией снабжаются конденсаторы популярных фирм, к примеру, установка вольтметра. Это надо для визуального инструментального контроля за просадками напряжения.

При подключении к системе запуска обязательно проверьте отсутствие напряжения на проводе запуска при стоянке. Если на нем будет отсутствовать потенциал, значит сеть автомобиля будет блокирована от конденсатора. Очень просто самому выполнить ручное включение. Чтобы это реализовать, нужно лишь использовать реле. Выключатель же можно расположить в любом месте, где удобно.

Законы последовательного и параллельного соединения проводников

Для детального понимания на практике обоих типов соединений, приведем формулы, объясняющие законы данных типов соединений. Расчет мощности при параллельном и последовательном типе соединения отличается.

При последовательной схеме имеется одинаковая сила тока во всех проводниках:

I = I1 = I2.

Согласно закону Ома, данные типы соединений проводников в разных случаях объясняются иначе. Так, в случае последовательной схемы, напряжения равны друг другу:

U1 = IR1, U2 = IR2.

Помимо этого, общее напряжение равно сумме напряжений отдельно взятых проводников:

U = U1 + U2 = I(R1 + R2) = IR.

Полное сопротивление электроцепи рассчитывается как сумма активных сопротивлений всех проводников, вне зависимости от их числа.

В случае параллельной схемы совокупное напряжение цепи аналогично напряжению отдельных элементов:

U1 = U2 = U.

А совокупная сила электротока рассчитывается как сумма токов, которые имеются по всем проводникам, расположенным параллельно:

I = I1 + I2.

Чтобы обеспечить максимальную эффективность электрических сетей, необходимо понимать суть обоих типов соединений и применять их целесообразно, используя законы и рассчитывая рациональность практической реализации.

Зачем нужен конденсатор для сабвуфера

Чтобы понять, зачем машина оснащается емким конденсатором, стоит вспомнить закон Ома для полной цепи. Именно он поможет понять, что происходит, когда сабвуфер резко выходит на максимальную громкость.

  1. У каждого аккумулятора есть параметр электродвижущей силы, который зависит от емкости устройства, его внутреннего сопротивления и других характеристик.
  2. До момента, когда усилитель и вся звуковая установка в целом не превышают по потреблению возможности аккумулятора, проводка работает в нормальном режиме.
  3. В периоды, когда сабвуфер резко наращивает громкость и потребление мощности — аккумулятор физически не способен удовлетворить потребности. Его электродвижущей силы недостаточно для поддержки стабильного напряжения.

В результате интенсивного отбора мощности для звука происходит следующее: растут рабочие токи, аккумулятор не может обеспечить потребности и напряжение бортовой сети резко падает. Как следствие, наблюдается просадка саба (динамики захлебываются), становится нештатным функционирование усилителя.

Именно для стабилизации работы бортовой сети нужны электролитические конденсаторы, которые отдают мощность в момент пиковой нагрузки. Стоит понимать, что среднестатистическая колонка в машине, как и вся аудиосистема в целом, не всегда работают даже на номинальной мощности. В эти периоды низкого потребления и токов машина своим генератором заряжает не только аккумулятор, но и установленный накопитель.

В периоды роста потребления конденсатор разряжается. Это позволяет получить действительно лучший звук без падений мощности и отказа набора фронта громкости звучания.

Смешанное соединение проводников

Последовательная и параллельная схема соединения сопротивления могут сочетаться в одной электросхеме при необходимости. К примеру, допускается подключение параллельных резисторов по последовательной схеме к другому резистору или их группе, такое тип считается комбинированным или смешанным.

В таком случае совокупное сопротивление рассчитывается посредством получения сумм значений для параллельного соединения в системе и для последовательного. Сначала необходимо рассчитывать эквивалентные сопротивления резисторов в последовательной схеме, а затем элементов параллельного. Последовательное соединение считается приоритетным, причем схемы такого комбинированного типа часто используются в бытовой технике и приборах.

Итак, рассматривая типы подключений проводников в электроцепях и основываясь на законах их функционирования, можно полностью понять суть организации схем большинства бытовых электроприборов. При параллельном и последовательном соединениях расчет показателей сопротивления и силы тока отличается. Зная принципы расчета и формулы, можно грамотно использовать каждый тип организации цепей для подключения элементов оптимальным способом и с максимальной эффективностью.

Особенности устройства с переменным электротоком

Чтобы определить, будет ли проходить переменный электроток, необходимо устройство подключить в соответствующую цепь. Основным источником электроэнергии в таком случае должно являться устройство, генерирующее именно переменный электроток.
Постоянный электрический ток не идет через конденсатор, а вот переменный, наоборот, протекает, причем устройство постоянно оказывает сопротивление проходящему через него электротоку. Величина этого сопротивления связана с частотой. Зависимость здесь обратно пропорциональная: чем ниже частота, тем выше сопротивление. Если к источнику переменного электротока подключить кондер, то наибольшее значение напряжения здесь будет зависеть от силы тока.

Как проверить качество соединения конденсаторов в цепи

Самый идеальный случай, когда у нас на руках имеется соответствующего типа вольтметр. Он стоит в пределах одной тысячи рублей.

Это не так много, учитывая, что вкупе мы получаем прибор для измерения сопротивлений, постоянного и переменного напряжения, токов.

Гнездо под измерение конденсатор (см. фото слева) представляет собой две узкие щели, куда должны вставляться ножки.

По нашим наблюдениям нет разницы, какой стороной вставлять электролитический конденсатор. Хотя лучше все же руководствоваться инструкцией по эксплуатации.

Ззатем как-то нужно промаркировать их, либо разложить по нарисованной на бумаге схеме, где уже проставлять все цифры (кстати, так обычно и делается во всей китайской технике).

Затем следует вычислить по формулам, какое именно значение должно получиться и проверить это тестером. Не получается? Значит, качество контактов плохое – меньше применяйте скруток.

СОЕДИНЕНИЯ КОНДЕНСАТОРОВ

Если необходимо увеличить общую емкость конденсаторов, то их соединяют между собой параллельно (рис. 9, а

). При этом способе соединения общая площадь пластин увеличивается по сравнению с площадью пластины каждого конденсатора. Общая емкость конденсаторов, соединенных параллельно, равна сумме емкостей отдельных конденсаторов и вычисляется по формуле Собщ=С1 + С2+С3+

(10)

Это можно подтвердить следующим образом.

Соединенные параллельно конденсаторы находятся под одним и тем же напряжением, равным U вольт, а общий заряд этих конденсаторов равен q кулонов. При этом каждый конденсатор соответственно получает заряд q 1 , q 2 , q 3, и т. д. Следовательно,

q общ = q 1 + q 2 + q 3 +

Из формулы (8) вытекает, что заряд

q общ = С общ U (11)

а заряды q 1 = С 1 U; q 2 = С 2 U; q 3 = С 3 U.

Подставив эти выражения в формулу (11), получим:

С общ U= С 1 U + С 2 U + С 3 U.

Разделив левую и правую части этого равенства на равную для всех конденсаторов величину U, после сокращения найдем:

С общ = С 1 + С 2 + С 3

Пример

. Три конденсатора емкостью С 1 =2 мкф ; C 2 =0,1 мкф и C 3 =0,5 мкф соединены параллельно.

Вычислить их общую емкость.

С общ = С 1 + С 2 + С 3 =2+00,1+0,5=2,6 мкф.

Общую емкость конденсаторов, имеющих одинаковую емкость и соединенных параллельно, можно вычислить по формуле

С общ = Сn, (12)

где С — емкость одного конденсатора,

n — число конденсаторов.

Пример.

Пять конденсаторов емкостью 2 мкф каждый соединены параллельно. Определить их общую емкость.

С общ = Сn =2·5=10 мкф.

Конденсаторы соединяют последовательно (рис. 9, б), когда рабочее напряжение установки превышает напряжение, на которое рассчитана изоляция одного конденсатора. В этом случае правую пластину первого конденсатора соединяют с левой пластиной второго, правую пластину второго — с левой пластиной третьего и т. д. Общая емкость конденсаторов при таком соединении уменьшается. Величина, обратная общей емкости конденсаторов, соединенных последовательно , равна сумме обратных величин емкостей отдельных конденсаторов:

Это можно подтвердить следующим образом. Общее напряжение на конденсаторах U общ а на каждом конденсаторе U 1 , U 2 , U 3 , тогда

U общ = U 1 +U 2 + U 3 .

Из Формулы (8) следует, что напряжение

U общ = (14)

а напряжение

Подставив эти выражения в формулу (14), получим:

Разделим левую и правую части этого равенства на величину q и после сокращения найдем:

Пример. Три конденсатора С1=2 мкф, С2=4 мкф и С3=8 мкф соединены последовательно. Определить их общую емкость.

Если последовательно соединены конденсаторы, имеющие одинаковую емкость, то их общую емкость можно вычислить по формуле

Пример.

Четыре конденсатора емкостью 1000 пф каждый соединены последовательно. Определить их общую емкость. Решение.

Если последовательно соединены два конденсатора различной емкости, то их общую емкость можно найти по формуле

Пример.

Два конденсатора С 1 =200 пф

и С 2 =300 пф соединены последовательно. Вычислить их общую емкость.

Как видно из приведенных примеров, общая емкость конденсаторов, соединенных последовательно, всегда меньше наименьшей емкости, входящей в соединение.

Конденсаторы выбирают по емкости и рабочему напряжению которое подается на его пластины при включении в схему. При напряжении, превышающем допустимое, происходит пробой диэлектрика в конденсаторе. Это напряжение называется пробивным. Пробой диэлектрика сопровождается электрическим разрядом — искрой с характерным треском. Конденсатор с пробитым диэлектриком не пригоден для применения.

Каждый диэлектрик обладает определенной электрической прочностью, т. е. способностью противостоять пробою. Электрическая прочность (табл. 2) измеряется обычно в (в/см

) и определяется по формуле

где U — напряжение, в

d — толщина диэлектрика, см.

Многие, собирая тот или иной прибор, часто задумываются о том, как соединить конденсаторы параллельным или последовательным соединением. Далеко не каждый номинал выпускается промышленностью, поэтому задача обеспечить конструкцию связкой ёмкостей встречается тут и там. При параллельном включении номиналы складываются, а при последовательном используется более сложная формула. А ещё конденсаторы бывают подстроечными, такие совершенно точно включаются в цепи, где требуется обеспечить нужные резонансные характеристики. В этом случае также требуется решить указанную выше задачу. Проблема ещё в том, что часто сборка какого-нибудь индукционного нагревателя идёт буквально на коленках, железа целая кипа, колодок под рукой нет, а паять лень – что делать?

Качество пассивных элементов

Конденсаторы, особенно когда они находятся на выходной сигнальной линии, сильно влияют на качество звука аудиосистемы.

Есть несколько факторов, которые определяют качество CAP, несомненно, очень важные для аудио:

  1. Толерантность и фактическая емкость, необходимые для использования в фильтрах.
  2. Зависимость емкости от частоты, так 1 микрофарад на 1 000 Гц не означает 1 микрофарад при 20 кГц.
  3. Внутреннее сопротивление (ESR).
  4. Ток утечки.
  5. Старение — фактор, который со временем будет развиваться для любого продукта.

Лучший выбор приложений конденсатора зависит от применения в цепи и необходимой емкости:

Диапазон от 1 пФ до 1 нФ — схемы управления и обратной связи. Этот диапазон в основном используется для устранения высокочастотного шума на аудиоканале или для целей обратной связи, таких как мост усилителя Quad 606. Конденсатор СГМ в звуке является лучшим выбором в этом диапазоне. Он имеет очень хорошую толерантность (до 1 %) и очень низкие искажения и шум, но довольно дорогой. МКС или МКП — это хорошая альтернатива. На сигнальной линии следует избегать керамических CAP, поскольку они могут вызвать дополнительные нелинейные искажения до 1 %. От 1 нФ до 1 мкФ — сцепление, развязка и подавления колебаний. Они чаще всего используются в аудиосистемах, а также между этапами, когда существует разница в уровне постоянного тока, устранение вибраций и в схемах обратной связи. Как правило, пленочные конденсаторы будут использоваться в этом диапазоне до 4,7 микрофарад. Лучшим выбором конденсатора для звука и аудио является полистирол (МКС), полипропилен (МКП). Полиэтилен (МКТ) является альтернативой с более низкой ценой. 1 Ф и выше — источники питания, выходные конденсаторы, фильтры, изоляция. Преимущество очень высокая емкость (до 1 Farad). Но есть несколько недостатков. Электролитические CAP подлежат старению и сушке. Через 10 или более лет масло высыхает, а важные факторы, такие как СОЭ, меняются. Они поляризованы и должны быть заменены каждые 10 лет, иначе негативно повлияют на звук. При проектировании соединительного контура электролитов на сигнальной линии часто можно избежать проблем путем пересчета константы времени (RxC) для низкой емкости ниже 1 микрофарада. Это поможет определить, какие электролитические конденсаторы лучше для звука

Если это невозможно, важно, чтобы электролит имел менее 1 В постоянного тока и использовался CAP высокого качества (BHC Aerovox, Nichicon, Epcos, Panasonic)

Выбрав лучшее решение для каждой программы, разработчик может достичь наилучшего качества звука. Инвестирование в высококачественные CAP оказывает положительное влияние на качество звука, больше чем в любой другой компонент.

Сравнение различных вариантов

ЕмкостьНапряжение
ПараллельноеУвеличиваетсяНе изменяется
ПоследовательноеУменьшаетсяУвеличивается
СмешанноеИзменяетсяУвеличивается

Для выбора соединения можно воспользоваться такой таблицей. Слева тип соединения приборов, сверху свойства прибора для конденсации заряда.

Если требуется увеличить емкость, то нужно использовать параллельное соединение, а если увеличить напряжение — то последовательное. Если же требуется и то, и то, то нужно будет рассчитывать смешанное подключение конденсаторов в цепь.

RC–цепочка

RC -цепочки бывают интегрирующего и дифференцирующего типа.

рис 10. Подключение RC -цепочки интегрирующего типа к генератору напряжения.

Что произойдет в этой схеме, если замкнуть выключатель S1?

Вопрос: А если запитать такую цепочку от генератора тока, как будет расти напряжение на конденсаторе?

Как выше было отмечено, ток в первый момент после подачи напряжение будет равен I=U/R, так как конденсатор разряжен, и напряжение на нем равно 0. И какое-то время, пока напряжение на конденсаторе Uc мало по сравнению с U, ток будет оставаться почти постоянным. А при заряде конденсатора постоянным током напряжение на нем растет линейно.

Uc=Q/C, а мы помним, что ток это количество заряда в секунду, то есть скорость протекания заряда. Другими словами, заряд это интеграл от тока.

Но все это близко к истине в начальный момент, пока напряжение на конденсаторе малó.

На самом деле все сводится к тому, что конденсатор заряжается постоянным током. А постоянный ток выдает генератор тока. (См. вопрос выше) Если источник напряжения выдает бесконечно большое напряжение и сопротивление R также имеет бесконечно большую величину, то по факту мы имеем уже идеальный генератор тока, и внешние цепи на величину этого тока влияния не оказывают.

Мнение эксперта

It-Technology, Cпециалист по электроэнергетике и электронике

Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Последовательное соединение Как правило на электролитических конденсаторах на корпусе контрастной полосой отмечается отрицательный вывод катод , у танталовых в желтых прямоугольных корпусах полоской помечается положительный вывод анод. Спрашивайте, я на связи!

Теги

использовать конденсаторы спараллельно конденсаторам подключатьэлектролитические конденсаторы для Конденсаторы соединение конденсаторов соединение конденсаторов соединение конденсаторов соединение конденсаторов соединения конденсаторов соединение конденсаторов и параллельные соединениярекомендуется параллельно конденсаторам Параллельное включениепоследовательном соединении уменьшаетсяпоследовательное соединение конденсаторовпараллельное соединение конденсаторовПараллельное соединение конденсаторовпараллельном соединении Последовательное соединение конденсаторовсмешанного соединения конденсаторовпараллельное соединение конденсаторовВиды соединения конденсаторовпараллельное соединение конденсаторовно напряжение делитсярабочим напряжением.применяют последовательные иПри последовательном соединенииВпрочем ПОСЛЕДОВАТЕЛЬНОГО практически

обкладкистатьинеобходимойнакопителейисточника

цифровая электроника вычислительная техника встраиваемые системы

Делаем простой настроечный конденсатор для УКВ своими руками

Если вы заядлый радиолюбитель и любите собирать радиоприемники, то, наверное, могли заметить, что у поставщиков электронных компонентов ассортимент настроечных конденсаторов переменной емкости несколько поубавился. Было время, когда почти в каждом радиоприемнике имелся хотя бы один подстроечный конденсатор, но теперь с появлением варикапа и синтезатора частот такой конденсатор настройки антенного контура является редкостью. Они все еще производятся, но стоят не дешево, и они не будут появляться в вашем ящике для компонентов также быстро, как это было раньше.

К счастью, конденсатор переменной емкости представляет собой удивительно простое устройство. Причем вы можете сделать его самостоятельно, по крайней мере, конденсатор емкостью в несколько десятков пикофарад собирается из подручных материалов.

Для сборки самодельного конденсатора вам понадобятся болт, пара гаек, кусок медной проволоки с покрытием (длина 30 см, калибр AWG22, т.е. диаметр 0.64 мм) и маленький кусочек текстолита.

Для начала накрутите гайки на болт и нанесите на одну из граней каждой гайки олово, затем припаяйте данный болт с гайками к куску медного текстолита, как показано на рисунках ниже.

Болт желательно брать длиной 16 мм. Если такового под рукой не оказалось, то можно взять длиннее, но придется обрезать его до длины. Теперь обмотайте край болта медной проволокой. Сделайте 12 колец, после двенадцатого оборота отрежьте лишние концы проволоки, оставив примерно по 12-15 мм с каждой стороны.

На рисунке ниже показан предпоследний шаг. На этом этапе нужно сделать меленькую пластмассовую прокладку и поместить ее между гайками. Это необходимо для надежной фиксации конструкции при вращении болта во время настройки такого самодельного конденсатора. Кусок такой пластмассы может быть от чего угодно и любого типа пластика. В данном случае использовался кусок пластиковой трубы.

На заключительном этапе нужно просто согнуть внешний конец провода катушки по направлению к внутреннему концу, затем срежьте излишки. Далее возьмите нож или другое лезвие и снимите эмаль с конца провода. В конечном итоге возьмите отрезанный кусок провода, зачистите его весь и припаяйте его к куску текстолита между двумя гайками. Сделайте так, чтобы оба конца катушки имели длину около 12-15 мм. Теперь вы можете подключать этими концами ваш самодельный настроечный конденсатор переменной емкости к вашему радиоприемнику.

Провод, припаянный к печатной плате, действует в качестве ротора, а провод, идущий от катушки, действует в качестве статора. С помощью такого конденсатора можно получать емкость от 5 до 27 пФ.

Условные обозначения

При сокращенной системе наносятся буквы и цифры, где буквой обозначается подкласс, цифрой — группа в зависимости от применяемого диэлектрика. Третий элемент указывает регистрационный номер типа изделия.

Советуем изучить Рекуперация или преобразование кинетической энергии торможения

При полном условном обозначении указываются параметры и характеристики в следующей последовательности:

  • условное обозначение конструктивного исполнения изделия;
  • номинальное напряжение изделия;
  • номинальная емкость изделия;
  • допустимое отклонение емкости;
  • температурная стабильность емкости изделия;
  • номинальная реактивная мощность изделия.
Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]