Если нужно сделать простой, но достаточно мощный УМЗЧ – микросхема TDA2040 или TDA2050 будет наилучшим и недорогим решением. Этот небольшой стереофонический усилитель ЗЧ построен на основе двух всем известных микросхем TDA2030A. По сравнению с классическим включением, в этой схеме улучшена фильтрация питания и оптимизирована разводка печатной платы. После добавления любого предусилителя и блока питания – конструкция идеально подходит для изготовления самодельного домашнего усилителя мощности звука, примерно на 15 Вт (каждый канал). Проект изготовлен на основе TDA2030A, но можно использовать TDA2040 или TDA2050, тем самым раза в полтора увеличивая выходную мощность. Усилитель подходит для динамиков с сопротивлением 8 или 4 Ом. Преимуществом конструкции является то, что она не требует двух-полярного питания, как большинство более серьёзных усилителей НЧ. Схема отличается хорошими параметрами, легкостью запуска и надежностью в работе.
Принципиальная электрическая схема УНЧ
Усилитель 2x15W ТДА2030 – схема стерео
TDA2030A позволяет спаять усилитель низкой частоты класса AB. Микросхема обеспечивает большой выходной ток, характеризуясь при этом низкими искажениями сигнала. Есть защита встроенная от короткого замыкания, которая автоматически ограничивает мощность до безопасной величины, а также традиционная для таких устройств тепловая защита. Схема состоит из двух одинаковых каналов, работа одного из которых описана далее.
Технические параметры
Технические характеристики TDA7294 позволяют получить максимальную мощность до 100 Вт, при сопротивлении в цепи нагрузки от 4 до 8 Ом. Этому способствуют полевые транзисторы, установленные в её предварительном и выходном каскадах. Устройство славится низким уровнем собственных искажений и шумов, работает в широком диапазоне частот и питающих напряжений.
Максимальные параметры
Рассмотрим максимальные значения предельно допустимых режимов эксплуатации TDA7294:
- напряжение питания (без сигнала) VS = ± 50 В;
- пиковый выходной ток IO = 10 А;
- мощность рассеивания (при Tcase=70 ОС) Ptot = 50 Вт;
- диапазон рабочих температур от 0 до 70 ОС;
- температура: кристалла Tj до +150 ОС; при хранении до +150 ОС.
Стоит учитывать, что поданные на микросхему 50 В являются критическими и могут вывести её из строя. Поэтому не стоит экспериментировать с такими величинами, если нет желания спалить устройство. Оптимальным напряжением при нагрузке в 4 Ом считается ±27 В, а для 8 Ом не более ±35 В.
Для использования на мощности более 10 Вт, необходимо предусмотреть радиатор. Если не заморачиваться с расчётами, то его можно взять из старого компьютерного блока питания. В любом случае, чем он больше тем лучше. Ставить нужно через слюдяную прокладку. Дополнительно можно установить вентилятор, предусмотрев при этом выход для воздуха.
Отдельно нужно сказать про выбор источника напряжения. Чтобы устройство выдавало заявленные 100 Вт для воспроизведения музыки, достаточно будет блока питания мощностью от 110 Вт. На многих форумах советуют брать с запасом на 250 Вт. C таким БП данная TDA справится и c чистым синусоидальным сигналом.
Электрические параметры
Значения электрических параметров TDA7294 получены производителем при следующих режимах измерения: напряжение питания VS = ± 35 В, сопротивлении нагрузки RL = 8 Ом, температуры воздуха Tamb=25 ОС, рабочая частоты f=1 кГц. Они справедливы если в графе «условия» не указано иных величин.
Принцип действия усилителя на TDA2030
Резисторы R1 (100k), R2 (100k) и R3 (100k) служат для создания виртуального нуля усилителя U1 (TDA2030A), а конденсатор C1 (22uF/35V) фильтрует это напряжение. Конденсатор С2 (2,2 uF/35V) отсекает постоянную составляющую – предотвращает попадание постоянного напряжения на вход микросхемы усилителя через линейный вход.
Элементы R4 (4,7k), R5 (100k) и C4 (2,2 uF/35V) работают в петле отрицательной обратной связи и имеют задачу формирования частотной характеристики усилителя. Резисторы R4 и R5 определяют уровень усиления, в то время как C4 обеспечивает усиление в единицу для постоянной составляющей.
Полезное: Зарядное устройство для кальциевых аккумуляторов
Резистор R6 (1R) вместе с конденсатором C6 (100nF) работают в системе, которая формирует характеристику АЧХ на выходе. Конденсатор C7 (2200uF/35V) предотвращает прохождение постоянного тока через динамик (пропуская переменный звуковой сигнал музыки).
Диоды D1 и D2 предотвращают появление опасных напряжений обратной полярности, которые могут возникнуть в катушке динамика и испортить микросхему. Конденсаторы C3 (100nF) и C5 (1000uF/35V) фильтруют питающее напряжение.
Мостовое включение
Мостовая схема позволяет добиться до 120 Вт на выходе. Для её реализации потребуется две микросхемы и только в случаях, когда нагрузка составляет 8 или 16 Ом. При меньшем сопротивлении, из-за больших токов, TDA может перегреться и выйти из строя. Она представляет собой конструктивное решение из двух типовых, рассмотренных выше. При этом, громкоговоритель подключен между выходами (контакт 14) микросхем. Оптимальное питающее напряжение для такой сборки не менее 35 В. Вход одного из усилителей (контакт 3) должен быть подключен к земле.
Здесь необходимо наличие резистора обратной связи (на 22 кОм), между контактами 14 и 2, первой и второй микросхемы соответственно. Если этого не сделать, то усилитель работать не будет.
Для включения усилителя на контакты 10 (Mute) и 9 (StandBuy) должно подаваться не менее 5 В.
Печатная плата УНЧ
Печатная плата УНЧ ТДА2030
Печатную плату можете посмотреть на фотографиях. с чертежами можно в архиве (без регистрации). Что касается сборки – удобно сначала впаять две перемычки на шинах питания. По возможности следует использовать более толстый провод, а не тоненькую ножку от резистора, как часто бывает. Если усилитель будет работать с АС 8 Ом, а не 4 Ома – конденсаторы C7 и C14 (2200uF/35V) могут иметь значение 1000uF.
На фланцы обязательно следует прикрутить радиаторы или один общий радиатор, помня, что корпуса микросхем TDA2030A внутренне связаны с массой.
На печатной плате с успехом можно применять микросхемы TDA2040 или TDA2050 без всяких изменений цоколёвки. Плата была разработана таким образом, чтобы ее можно было при необходимости перерезать в месте, обозначенном пунктирной линией, и использовать только одну половину усилителя с микросхемой U1. На место разъемов AR2 (TB2-5) и AR3 (TB2-5) можете впаивать провода напрямую, если аудио разъёмы закреплены на корпусе усилителя.
Печатная плата усилителя готовая с расположением деталей
Аналоги
Какая микросхема лучше для усилителя звука tda7294 или tda7293? Данный вопрос встречается часто при поиске аналогов, так как эти две TDA можно назвать взаимозаменяемыми (главное условие – питания схемы не более 40 В). Основные параметры у них особо ничем не отличаются.
Вместе с тем, tda7293 имеет чуть лучше характеристики по максимальному питающему напряжению и выходной мощности. В ней доработаны функции вольтодобавки и клип-детектора. Реализована возможность параллельного соединения для умощнения. Но, несмотря на эти плюсы, некоторые радиолюбители считают её более глючной и менее надёжной в использовании.
DataSheet на устройство tda7294 в формате pdf от компании ST Microelectronics можно скачать по ссылке.
Корпус и БП
Блок питания берите или с трансформатором плюс выпрямитель, или готовый импульсный, например от ноутбука. Усилитель необходимо питать не стабилизированным напряжением в пределах 12 – 30 В. Максимальное напряжение питания 35 В, до которого естественно лучше не доходить на пару вольт, мало ли что.
Корпус делать с нуля очень хлопотно, так что проще всего подобрать готовую коробку (металл, пластик) или даже готовый корпус от электронного устройства (ТВ тюнер спутниковый, плеер DVD).
Используемые детали
Усилитель доступен для сборки даже начинающими и малочувствителен к качеству комплектующих. Но для получения наилучших параметров и максимально хорошего звука усилитель должен быть собран из качественных деталей. Качественные – это не обязательно дорогие.
Комплектующие неизвестного производителя лучше не использовать: они могут иметь плохие параметры. При применении таких комплектующих, усилитель может работать плохо или вообще не работать.
Список используемых деталей (BOM List) можно загрузить по ссылкам:
На русском языке:
hi-fi-7294-2020-bom-rus
In English:
hi-fi-7294-2020-bom-eng
Резисторы
В усилителе используются недорогие металлопленочные резисторы. Все резисторы кроме R9 мощностью 0,125…0,25 Вт. Если R9 российского производства, то достаточна мощность 0,5 Вт. Если R9 не российского производства, то рекомендуется устанавливать R9 мощностью 1 Вт. Это надежнее для работы на максимальной мощности или в качестве измерительного усилителя.
Если планируется стерео усилитель или многоканальный усилитель, то резисторы, включенные в цепь отрицательной обратной связи (R2…R5), желательно использовать с точностью 1% или лучше (более точные, чем 0,25% не нужны). В этом случае разбаланс громкости стереоканалов будет минимальным. Если доступны только резисторы точностью 5%, то их следует по возможности подобрать одинакового сопротивления во всех каналах. Другие резисторы не критичны к величине точности.
Большое значение имеет резистор R10. Этот резистор служит для разделения земли в усилителе. Но входная и выходная земли должны быть не только разделены, но и обязательно связаны. Если резистор R10 отсутствует, имеет плохой контакт или слишком большое сопротивление, то усилитель работать не будет. Поэтому важно, чтобы этот резистор был надежным и качественным и имел требуемое сопротивление. Аудио качество этому резистору не нужно.
В принципе, резистор R10 можно заменить перемычкой.
Керамические конденсаторы
Конденсаторы C1 и Cx керамические из качественной низковольтной керамики, с максимальным рабочим напряжением 50 вольт. Качественная керамика определяется по температурному коэффициенту емкости конденсатора (ТКЕ, TCC). Эти конденсаторы должны быть с ТКЕ класса НП0 (NP0), или С0G. Иногда вместо цифры 0 пишут букву О (НПО, NPO) – это то же самое. Производитель конденсаторов является важным. Конденсаторы noname лучше не использовать. Подойдут, например, Murata, Vishay, EPCOS. Можно использовать конденсаторы российского производства.
Выбор емкости конденсаторов C1 и Cx
Конденсатор С1 обрезает высокие частоты, поступающие на вход усилителя (он образует фильтр нижних частот), и тем самым подавляет высокочастотные помехи. Однако при этом сужается диапазон рабочих частот усилителя в области высоких частот. Емкость конденсатора С1 выбирается исходя из величины сопротивления регулятора громкости и требуемой частоты среза фильтра нижних частот (ФНЧ, LPF), который образует этот конденсатор совместно с резистором R1 и сопротивлением регулятора громкости. Я предлагаю на выбор одну из двух частот: 50 кГц и 70 кГц.
Частота среза 50 кГц выбирается для более сильного подавления возможных высокочастотных помех, поступающих на вход.
Источниками таких помех может быть как аппаратура связи (мобильные устройства, Wi-Fi и Bluetooth, радиосвязь, телевидение), так и другие промышленные и бытовые устройства.
Но высокочастотные помехи возникают не только из-за наводок систем радиосвязи. Ультразвук может поступать на вход усилителя с проигрывателя CD (точнее, его ЦАПа) — недостаточно отфильтрованная частота дискретизации. Или, например, с проигрывателя виниловых грампластинок — там ультразвук образуется при движении иглы звукоснимателя по канавке грампластинки.
Если вы уверены в отсутствии высокочастотных помех, то частоту среза входного фильтра можно выбрать равной 70 кГц. В этом случае усилитель может иметь максимальную рабочую частоту примерно 50 кГц.
При выборе частоты среза входного фильтра равной 50 кГц усилитель может иметь максимальную рабочую частоту примерно 40 кГц.
Значения емкости конденсатора C1 в зависимости от величины сопротивления регулятора громкости и требуемой частоты среза входного фильтра.
Сопротивление регулятора громкости, кОм | Емкость конденсатора С1, необходимая для получения частоты среза входного фильтра 50 кГц, пФ | Емкость конденсатора С1, необходимая для получения частоты среза входного фильтра 70 кГц, пФ |
Регулятор громкости на входе усилителя отсутствует: используется предусилитель или громкость регулируется звуковой картой компьютера | 2200 | 1500 |
5 | 1200 | 820 |
10 | 820 | 560 |
20 | 510 | 360 |
30 | 360 | 240 |
50 | 220 | 160 |
100 | 120 | 82 |
Конденсатор Cx выполняет несколько функций одновременно:
- — улучшает устойчивость усилителя;
- — увеличивает глубину отрицательной обратной связи (ООС) на высоких частотах и снижает искажения;
- — на высоких частотах форсирует сигнал в цепи ООС, что практически исключает возможность появления динамических искажений.
Конденсатор Cx также как и C1 уменьшает верхнюю граничную частоту усилителя.
Оба конденсатора работают на частотах выше 20 кГц, поэтому на воспроизведение высоких звуковых частот они практически не влияют. Совместное использование этих конденсаторов приводит к тому, что динамические искажения в усилителе вообще не возникают. Однако некоторые люди хотят получить усилитель с частотным диапазоном до 40…50 кГц. Это их право, несмотря на то, что большинство людей не слышит сигналов выше частоты 20 кГц (небольшое исследование на эту тему опубликовано в статье Исследование верхней границы слуха). Кроме того, влияние любых фильтров на частотную характеристику происходит плавно, поэтому даже если верхняя граничная частота усилителя равна 50 кГц, на частоте 20 кГц амплитудно-частотная характеристика усилителя (АЧХ) имеет завал, хоть и микроскопический.
Выбор величины емкости конденсатора Cx.
Вариант 1. Частота среза входного фильтра НЧ равна 70 кГц.
Емкость конденсатора Cx, пФ | Верхняя граничная частота усилителя по уровню -3 дБ, кГц | Завал АЧХ усилителя на частоте 20 кГц, дБ |
47 | 54 | 0,5 |
56 | 50 | 0,6 |
68 | 46 | 0,65 |
75 | 44 | 0,7 |
82 | 42 | 0,8 |
Вариант 2. Частота среза входного фильтра НЧ равна 50 кГц.
Емкость конденсатора Cx, пФ | Верхняя граничная частота усилителя по уровню -3 дБ, кГц | Завал АЧХ усилителя на частоте 20 кГц, дБ |
47 | 42 | 0,8 |
56 | 40 | 0,9 |
68 | 37 | 1 |
Завал АЧХ на частоте 20 кГц величиной 0,8 дБ, а тем более 1 дБ может показаться слишком большим. Но на самом деле он незаметен:
- он ниже порога чувствительности слуха на этой частоте,
- на частоте 20 кГц уже практически нет никакого звука,
- не все люди эту частоту слышат
На самом деле емкость этих конденсаторов может немного отличаться от указанной. Изменение емкости частотозадающих конденсаторов на 10…20% будет незаметно. Но если изменять емкость этих конденсаторов, то все же лучше в сторону расширения АЧХ: C1 увеличивать, а C2 и Cx уменьшать.
Пленочные конденсаторы
Конденсаторы C2, C4, C6, C7, C9 пленочные лавсановые (другие названия диэлектрика – майлар, полиэстер, MKT).
Самым важным для звука является конденсатор C2. Он должен быть хорошего качества. На этом месте можно применить конденсатор с диэлектриком из полипропилена (MKP). Разницы в звуке вы, скорее всего, не заметите, но все равно будет приятно, что вы сделали максимум для получения высокого качества звучания.
На самом деле, для получения хорошего звука гораздо важнее использовать правильный блок питания и правильный монтаж блоков усилителя внутри корпуса. Но в любом случае конденсатор C2 не должен быть плохим.
Конденсатор С6 меньше всего влияет на качество звучания. В принципе, его даже можно исключить из схемы. Тем не менее, даже на этом месте использовать плохой конденсатор не рекомендуется.
Конденсатор C4 улучшает устойчивость усилителя. Его максимальное рабочее напряжение может быть до 250 вольт. Если есть возможность выбора, то этот конденсатор рекомендуется выбирать наибольшего размера из всех доступных, но такой, чтобы его можно было нормально установить на плату. При работе усилителя через этот конденсатор проходит сравнительно большой высокочастотный ток, и конденсатор может нагреваться. Чем больше размер конденсатора, тем меньше нагрев. Будьте благоразумными! Размер конденсатора 7,5 мм вполне достаточен!
Конденсаторы C7 и C9 помогают конденсаторам C8 и C10 снабжать усилитель энергией на высоких частотах. Емкость этих конденсаторов 2,2…4,7 мкФ, максимальное рабочее напряжение не менее 63 вольт. Конденсаторы должны быть качественными, чтобы хорошо работать. Чем больше емкость, тем лучше, но будьте разумными. Важно, чтобы длина выводов этих конденсаторов была минимальной – индуктивность длинных выводов будет мешать их работе. Поэтому конденсатор меньшей емкости с короткими выводами будет работать лучше, чем конденсатор большей емкости, но с длинными выводами.
«Зеленые» конденсаторы можно использовать в позициях C4 и C6.
Хорошие конденсаторы не обязательно дорогие. Более того, лучше использовать «обычные» конденсаторы известного производителя, чем конденсаторы неизвестного .
Выбор емкости конденсатора C2
Величина емкости конденсатора C2 определяет как нижнюю граничную частоту усилителя, так и завал АЧХ усилителя на низких частотах. Этот конденсатор совместно с входным сопротивлением усилителя образует фильтр верхних частот (ФВЧ, HPF), пропускающий частоты выше 10…25 Гц и подавляющий частоты, лежащие ниже этого значения.
Как выглядит амплитудно-частотная характеристика в области низких частот при различных значениях емкости конденсатора C2, показано на рисунке (высокие частоты на этом рисунке изображены условно).
АЧХ усилителя при разных значениях C2.
Параметры усилителя в зависимости от емкости конденсатора C2.
Емкость конденсатора C2, мкФ | Нижняя граничная частота усилителя по уровню -3 дБ, Гц | Завал АЧХ усилителя на частоте 20 Гц, дБ | Завал АЧХ усилителя на частоте 25 Гц, дБ | Завал АЧХ усилителя на частоте 30 Гц, дБ |
0,22 | 22 | 3,3 | 2,5 | 1,8 |
0,33 | 14 | 1,8 | 1,3 | 0,9 |
0,47 | 10 | 0,9 | 0,6 | 0,5 |
0,68 | 7 | 0,5 | 0,3 | 0,2 |
1,0 | 5 | 0,2 | 0,2 | 0,1 |
1,5 | 3 | 0,1 | 0,1 | 0,05 |
Стратегия выбора величины емкости конденсатора C2
Чем емкость C2 больше, тем меньше нижняя частота среза усилителя (то есть усилитель достаточно сильно усиливает более низкие частоты), и тем меньше завал АЧХ на низких звуковых частотах.
Но сказать, что чем емкость C2 больше, тем низкие частоты воспроизводятся лучше, будет неверно.
Действительно, если АЧХ ваших колонок начинается с 40 Гц, то всё, что происходит ниже 30 Гц вас не должно беспокоить.
Правильнее будет сказать так: если емкость конденсатора C2 меньше некоторого значения, то громкость самых низких частот звукового диапазона будет уменьшаться. Например, если C2 = 0,68 мкФ, то завал АЧХ на частоте 20 Гц составляет 0,5 дБ – это намного меньше, чем предел чувствительности слуха на этой частоте, так что такой завал мы наверняка не услышим. При этом усилитель воспроизводит частоты, начиная с 7 герц. Если же емкость конденсатора C2 уменьшить до 0,1 мкФ, то громкость на самых-самых низких частотах немного снизится. Мы заметим это лишь на очень хорошей фонограмме и отличных колонках. И то, только при сравнительном прослушивании. Но ведь заметим!
А нужны ли настолько низкие частоты?
Утверждают, что если усилитель воспроизводит абсолютно все низкие частоты, начиная с постоянного напряжения, то это улучшает звук. Рассказывают даже о постоянной составляющей звука. Это все рекламные и маркетинговые уловки, не имеющие ничего общего с действительностью.
Постоянная составляющая звука – это атмосферное давление, и изменить его неспособна ни одна колонка. А инфразвуковые частоты, которые могут попасть на выход усилителя и воспроизвестись колонками, вредны для человека. Например, инфразвуковые частоты, совпадающие с частотой альфа-ритма головного мозга (частоты 7…15 Гц), могут вызвать головную боль, дезориентацию и даже панику.
Большое количество инфразвуковых частот образуется при воспроизведении виниловых грампластинок. Особенно старых: покоробленных и имеющих эксцентриситет. Но даже при воспроизведении новых грампластинок инфразвук все же возникает: он создается и двигателем проигрывателя (рокот) и физическими процессами трения иглы в канавке. Подробно об этом писал Дуглас Селф (Douglas Self) в книге Electronics for Vinyl.
К счастью, большинство звуковых колонок на таких частотах не могут создать значительного звукового давления, но лучше, если эти частоты обрезать еще в усилителе.
Другой причиной для отказа от воспроизведения очень низких частот, являются физические процессы в громкоговорителях. Для равной громкости при снижении частоты, ход диффузора растет пропорционально второй степени. То есть, если частота снизилась вдвое, ход диффузора должен вырасти в 4 раза. На самом деле ход диффузора растет еще сильнее из-за уменьшения чувствительности слуха на самых низких частотах. Но диапазон линейного хода громкоговорителя ограничен, поэтому низкие частоты значительного уровня могут перегрузить громкоговоритель, и будет искажаться весь звук вообще.
Особенно подвержены этому явлению колонки с фазоинвертором (ФИ) – на частотах ниже частоты настройки ФИ, ход диффузора ничем не ограничен. При этом колонка звук практически не излучает, так как происходит акустическое короткое замыкание: звук, излучаемый громкоговорителем и звук, излучаемый фазоинвертором, вычитаются друг из друга практически до нуля.
В результате получается, что слышимая перегрузка отсутствует, а звук плохой. Так что с этой точки зрения, ограничение воспроизведения очень низких частот положительно сказывается на работе всей системы, на качестве звучания и на восприятии звука человеком.
С другой стороны, чем выше частота среза усилителя, тем хуже переходные процессы при воспроизведении низкочастотного музыкального сигнала (не бесконечно, а до определенных пределов). Басы, особенно в колонках с фазоинвертором, получаются немного более затянутыми.
Так что с этой точки зрения сильно увеличивать нижнюю граничную частоту усилителя тоже нежелательно.
Что же делать?
Выход такой: частота среза фильтра верхних частот, образованного конденсатором C2, должна быть в 2…3 раза меньше, чем нижняя рабочая частота колонок, подключенных к этому усилителю. Но не ниже 10 Гц. И не бойтесь завала АЧХ на низких частотах! Завал в 1 дБ на частотах ниже 30 Гц на слух незаметен.
Лично я чаще всего использую конденсатор C2 емкостью 0,33 мкФ, и реже емкостью 0,47 мкФ.
Для выбора емкости конденсатора C2 воспользуйтесь этой таблицей.
Назначение усилителя | Емкость конденсатора C2, мкФ |
Колонки среднего качества с нижней рабочей частотой 50…80 Гц. Особенно рекомендуется при воспроизведении винила | 0,22 |
Колонки более высокого качества с нижней рабочей частотой 30…40 Гц Высококачественные колонки с мощными басами и нижней рабочей частотой 20…30 Гц при воспроизведении винила | 0,33 |
Высококачественные колонки с мощными басами и нижней рабочей частотой 20…30 Гц. Качественный сабвуфер при воспроизведении винила | 0,47 |
Качественный сабвуфер при воспроизведении винила Качественный сабвуфер | 0,68 |
Высококачественный сабвуфер | 1,0 |
Сабвуфер для маньяков | 1,5 |
Для себя и на заказ (по согласованию с заказчиками после изучения их требований и их аппаратуры) я обычно делаю два варианта усилителя (используется предварительный усилитель с регулятором громкости):
- «Стандартный» с таким набором номиналов элементов: С1 = 2200 пФ (частота среза входного фильтра 50 кГц), Cx = 47 пФ, C2 = 0,33 мкФ полипропиленовый (MKP) Epcos или К78-19.
- «С расширенным частотным диапазоном». С таким набором номиналов элементов: С1 = 1500 пФ (частота среза входного фильтра 70 кГц), Cx = 47 пФ, C2 = 0,47 мкФ полипропиленовый (MKP) Epcos или К78-19.
Амплитудно-частотные характеристики этих двух вариантов усилителя показаны на рисунке.
Электролитические конденсаторы
В позициях C3 и C5 должны быть обычные качественные конденсаторы. Конденсатор C3 задает время включения усилителя и на звук не влияет. Но если он некачественный или имеет большую утечку, то усилитель может не включиться. При некачественном конденсаторе C5 максимальная неискаженная выходная мощность оказывается намного меньше, чем могла бы быть.
Конденсаторы C8 и C10 выполняют сразу три функции:
- Дополнительно подавляют пульсации напряжения питания.
- Подпитывают усилитель на пиках громкости. Конденсаторы C8 и C10 установлены очень близко к микросхеме, и проводники, идущие от этих конденсаторов, очень короткие. Поэтому эти проводники имеют очень маленькое сопротивление и индуктивность. В результате при необходимости вся энергия этих конденсаторов быстро поступает в микросхему и передается на выход в громкоговорители.
- Пропускают через себя ток громкоговорителей на средних и высоких частотах. В результате этот ток замыкается наиболее коротким путем.
Все эти функции на самом деле объединены. Физически это одна функция. Я их разделяю мысленно, чтобы удобнее было их анализировать.
Функции конденсаторов C8 и C10 очень важны, поэтому эти конденсаторы должны иметь хорошее качество. Очень полезно в этой позиции использовать конденсаторы типа Low ESR или Low Impedance.
Однако будьте благоразумны! Важность качества конденсаторов C8 и C10 зачастую преувеличивается. Нет смысла применять экзотические «волшебные» суперконденсаторы. Вполне достаточно хороших конденсаторов от надежного производителя. Важно, чтобы эти конденсаторы были правильно впаяны с плату. При этом они имеют выводы минимальной длины, а значит минимальное сопротивление и индуктивность.
Использовать конденсаторы C8 и C10 емкостью меньше, чем 1000 мкФ не рекомендуется. Значительно увеличивать их емкость тоже не рекомендуется. Можно использовать конденсаторы емкостью 2200 мкФ, но при качественном источнике питания разницы не будет.
На высоких частотах электролитическим конденсаторам C8 и C10 помогают пленочные конденсаторы C7 и C9, поэтому эти конденсаторы также должны иметь хорошее качество.
Источник питания для усилителя
Работа усилителя очень сильно зависит от источника питания. Фактически усилитель занимается тем, что передает энергию из источника питания в колонки. Но делает это под управлением звукового сигнала. Передача энергии происходит так, чтобы в колонках сигнал был точно такой же, как и на входе усилителя. Как сделать правильный и хороший блок питания описано в статье Блок питания для TDA7294.
О том, как правильно сделать усилитель и источник питания, чтобы получить максимальное качество звучания, написано в этих статьях:
Дополнительная информация об усилителях и повышении качества звучания:
Ссылки приведенные в статье
Усилитель на TDA7293 / 7294 с Т-образной ООС
Блок питания для TDA7294
Разделение земли в усилителе
Подключение блоков внутри усилителя
Работа усилителя на микросхеме TDA7293 (TDA7294) на “трудную” нагрузку
Клип-детектор (clip-detector) для усилителя на TDA7293
Исследование верхней границы слуха
Информация, позволяющая лучше понять работу усилителя и получить максимум качества звучания
Hi-Fi усилитель на микросхеме TDA7294
Клиппинг (cliping) в усилителе
Расчет источника питания усилителя
Трансформатор для питания усилителя
Правильный выпрямитель
Выпрямитель для усилителя или сага о быстром диоде
Раздельное питание каналов стерео усилителя
Массив конденсаторов – мифы и реальность
Режимы Mute и StandBy в микросхеме TDA7294 / TDA7293
↑ Схема усилителя должна быть проста и универсальна
Для построения усилителя мощности была выбрана популярная, но мною лично не любимая микросхема TDA7294 производства SGS-Thomson. Поводом к такому отношению стали частые отказы и обилие поддельных микросхем. Однако потом выяснилось, что в смерти ИМС повинны мои собственные кривые руки, которые обеспечили явно завышенное питание и не заземлили радиатор. Это обязательное условие стабильной работы микросхемы. Она боится статики — ее надо изолировать от радиатора, а радиатор обязательно заземлить на среднюю точку питания.
Достаточно долгие построения и моделирования в Multisim 2001 позволили создать цепь обратной связи, воплощающую все эти, казалось, несовместимые требования.
Итак, перед вами схема «бешенной» обратной связи, MadFeedback1 (MF1) .
Похожие материалы
- Усилитель УНЧ на TDA1558
- УМЗЧ с крайне глубокой ООС
- Транзисторный усилитель мощности для диапазона 144 и 430 МГц
- бестрансформаторный лампово-транзисторный усилитель мощности
- Усовершенствованный бестрансформаторный лампово-транзисторный усилитель мощности
- Ламповый усилитель на EL84
- Двухтактный усилитель на лампах 6П13С
- УКВ (FМ) усилитель мощности 1.5 Вт
- Приемник для охоты на лис на диапазон 80 метров
- Широкополосный реверсивный усилитель
Всего комментариев: |
Социальные сети |
Календарь | ||||||
Пн | Вт | Ср | Чт | Пт | Сб | Вс |
1 | 2 | 3 | 4 | 5 | 6 | 7 |
12 | 13 | |||||
16 | ||||||
25 | ||||||
30 |
Статистика |
Посешаемость |
ТЕГИ |
Рекламный блок |
Радиолюбитель 2020 |
Схемы включения операционных усилителей
TDA7265 и два варианта включения
Есть два варианта включения микросхемы.
- Большой диапазон питания (+-25В);
- Схема с двуполярным питанием;
- Мощность 2х25 Вт
- Есть режим работы без звука и функция ожидания;
- Термозащита от перегрева во время работы усилителя;
- Присутствует защита от кз.
Мостовой вариант усилителя на TDA7265
Характеристики микросхемы
Напряжение питания Uпит | 25 В |
Напряжение на выходе в холостом режиме | 80 — 130 мВ |
Ток потребления в холостом режиме Iпотр | 65 — 120 мА |
Ток смещения на неинвертирующем входе Iсмещ | 500 нА |
Выходная мощность Pвых | 20 — 25 Вт |
Коэффициент гармоник Kr | 0,01 — 0,7 % |
Коэффициент усиления (открытый контур) | 80 дБ |
Входное сопротивление Rвх | 15 — 20 кОм |
Температура отключения | 145 °C |
Предельные параметры микросхемы
Напряжение питания Uпит | 25 В |
Выходной пиковый ток | 4,5 А |
Рассеиваемая мощность Pрасс | 30 Вт |
Рабочая температура Tраб | -20…+85 °C |
Температура хранения Tхран | -40…+150 °C |