Регулятор мощности на полевых транзисторах с ШИ-управлением + устройство для питания 110-вольтовой аппаратуры от 220 Вольт

Привет всем датагорцам и гостям Датагории!
Предлагаю схемку простого в изготовлении и наладке устройства. Это — регулятор мощности, мало чем отличающийся по функционалу от прочих аналогичных устройств, самые разнообразные схемы которых можно отыскать в Интернете.
Лично меня на изготовление этого регулятора сподвигло несколько обстоятельств:
1) необходимость плавного регулирования светового потока полукиловаттной группы галогенных ламп; 2) регулировка температуры секции ТЭНов; 3) димминг светодиодных групп при работе от различных напряжений; 4) балласт для музыкального центра, купленного знакомыми на EBAY, рассчитанного на работу от 110-вольтной сети переменного тока.

↑ Недостатки тиристорных и симисторных схем

От схем тиристорных регуляторов, изготавливаемых ранее мною неоднократно, решил отказаться по многим причинам, не устраивающим меня: а) трудноустраняемые помехи; б) большой ток управления; в) полное открывание тиристоров (симисторов) без принятия специальных мер с усложнением схемы; г) значительное падение напряжения, увеличивающее значение, рассеиваемой прибором мощности; д) невозможность нормальной работы мощного триака на малых токах.
На самом деле проблему, указанную в пункте «а» можно решить глухой экранировкой и фильтрацией цепей питания, синхронизировать схему управления триаком с нулевым значением сетевой синусоиды, но эти меры неизбежно приведут к ухудшению массогабаритных показателей устройства, к его удорожанию.

Так же невозможно использование симисторной схемы в качестве балласта из-за полного открывания симистора в момент коммутации (без усложнения схемы), что может привести к выходу из строя питаемого через такой балласт устройства.

И, конечно, универсальный регулятор должен нормально работать в широком диапазоне токов нагрузки.

↑ Общие рекомендации

Ввиду высоких напряжений и влияния утечек, промывка платы совершенно необходима. Между деталями и платой должен быть небольшой зазор. После настройки платы желательно покрыть её со стороны фольги слоем лака «Plastik» или аналогичным.

Делитель R1R2 позволяет плавно регулировать напряжение на нагрузке и гасить, при необходимости, лишнее напряжение. В усилителе для наушников я погасил примерно 50 В. Это проще, чем менять силовой трансформатор. Плавная подача напряжения полезна для ламп и сглаживает переходные процессы.

Надо отметить, что замыкания в нагрузке недопустимы – транзистор фильтра моментально выйдет из строя. На время предварительной настройки, если нет уверенности в монтаже усилителя и исправности элементов, фильтр даже можно заменить постоянным резистором, например, МЛТ-2. Для данного усилителя при токе потребления 0,1 А и падении напряжения на фильтре 20 В, годится резистор МЛТ-2 200 Ом.

Изготовление универсальных плат фильтров «впрок» я считаю простым и полезным. Платы не нуждаются в настройке. Требуется только отформовать конденсаторы, особенно если они новые и проверить входное и выходное напряжение, а при необходимости – подстроить последнее.

Просмотр напряжений на входе и выходе фильтра желателен. Во избежание выхода осциллографа из строя, напряжение надо подавать на его закрытый вход.

Заодно выяснилось, что разделительный конденсатор на входе С1-94 обладает утечкой, поэтому для наблюдения на пределе «10 мВ» пришлось включать его через дополнительную качественную (конечно, не «электролит») ёмкость с полипропиленовым диэлектриком.

↑ Схема регулятора мощности на полевых транзисторах

Исключён фрагмент. Полный вариант доступен меценатам и полноправным членам сообщества.

Впрочем, как бы там ни было, я решил собрать
регулятор на полевых транзисторах
(далее ПТ) с ШИ-управлением. В отличие от схем на ПТ с фазоимпульсным управлением, где существует привязка схемы к частоте сетевого напряжения, при ШИ-управлении схемой управления генерируются собственная последовательность импульсов, модулируя сетевую частоту. Изменением ширины этих импульсов достигается изменение значения выходного напряжения.

Схема регулятора получается достаточно простой, малошумящей и работоспособной при любых значениях тока в нагрузке. Начну, пожалуй, с эксплуатационных характеристик. До 200 Вт полевые транзисторы практически не греются

(для этого обеспечено их полное открывание импульсами схемы управления). При эксплуатации регулятора с нагрузкой, имеющей большую, чем 200 Вт мощность, на ПТ следует установить радиаторы. Так, например, при мощности нагрузки 1 кВт, на открытом канале ПТ, имеющем, предположим, сопротивление 0,1 Ом, падение напряжения составит около 0,45 В, а рассеиваемая мощность превысит 2 Вт, что неизбежно вызовет разогрев кристалла транзистора. При длительной работе на мощную нагрузку (от 500 Вт и выше) может потребоваться обдув радиатора. При работе с мощным трансформатором (от UPS — в понижающем включении), вторичная обмотка трансформатора была нагружена 12-вольтовой автомобильной галогенной лампой мощностью 190 Вт.

↑ Модульная конструкция

На мой взгляд, удобно делать типовые модули, например, такие.


В качестве теплоотвода использованы радиаторы размерами примерно 45×45х5 мм от древних компьютерных плат. Нетипичен монтаж деталей со стороны фольги и использование отрезков лужёного провода от выводов деталей для точек подключения. Это сделано для упрощения монтажа – плата держится на выводах полевого транзистора (и плотно прилегает к нему) достаточно прочно, транзистор с платой крепится одним винтом к теплоотводу. Сначала я предусмотрел вторую точку крепления платы к радиатору, затем от неё отказался. На фото достаточно хорошо виден монтаж. В целях безопасности использованы изоляционные втулки и прокладки.


Весьма рекомендую, иначе на корпусе теплоотвода будет напряжение 300 Вольт.
Применённый транзистор 03N60S5 в корпусе ТО-220, при комнатной температуре окружающей среды может рассеивать до 2 Ватт. Суммарный ток однотактного стереоусилителя на 6Н3П и 6П14П примерно 0,1 А, при падении напряжении на фильтре порядка 20 В, тепловая мощность будет как раз 2 Ватта, поэтому даже небольшой теплоотвод легко справится со своей задачей.

Если использовать фильтр на каждый канал, каждый транзистор будет рассеивать всего 1 Ватт. Но это в установившемся, статическом режиме, а вот при включении питания падение напряжения на фильтре будет значительным, тепловая мощность тоже. Поэтому теплоотвод необходим, особенно пока не закончатся переходные процессы.

Первый вариант платы был под малогабаритные теплоотводы, он может быть использован при недостатке места (конденсатор на первом фото снят для наглядности).

↑ Результаты испытаний


Регулятор был собран на самопальной макетной плате моим другом и был опробован в работе с различными нагрузками: 1) галогенный прожектор (200 Вт); 2) тепловентилятор; 3) светодиодная группа от ТВ матрицы (150 В); 3) электродрель (360 Вт); 4) различные трансформаторы (от адаптеров питания старых модемов до трансформаторов от старых телевизионных приёмников).
Результаты оказались ожидаемыми. А это значит, что связку «регулятор-трансформатор» можно использовать в качестве автотрансформатора и получить на выходе регулируемое от 0 до максимального значения переменное напряжение.

Получилась также очень плавная регулировка светового потока, как галогенных ламп, так и светодиодной группы.

Регулировка оборотов/мощности двигателей (тепловентилятора и электродрели) так же — удалась, несмотря на то, что эта функция не имела для меня особого значения и была исследована ради интереса.

Регулировка мощности 2-киловаттной секции ТЭНов — успешно. Регулятор стабильно работает в широком диапазоне токов (от десятых долей миллиампер) и не имеет выбросов напряжения при коммутации.

Исключён фрагмент. Полный вариант доступен меценатам и полноправным членам сообщества.

↑ Вооружённым глазом

Теперь посмотрим на осциллограммы напряжений на входе и выходе фильтра.


Размах от пика до пика 6 В. На входе фильтра – выпрямительный мост и ёмкость 120 мкФ, на выходе две ёмкости 120 мкФ, ток потребляемый усилителем 0,1 А.


Размах пульсаций на выходе примерно 6 мВ (соответствует синусоидальному сигналу примерно 2 мВ), форма пульсаций более гладкая, подавление пульсаций около 1000 раз! (масштаб на фото, конечно, разный).
Для подавления возможных помех на радиочастотах можно поставить дополнительный LC-фильтр. Для меня в этом не было необходимости – фон и помехи на слух отсутствовали. В усилителях более высокого класса дополнительный LC-фильтр (с небольшой малогабаритной индуктивностью) желателен.

Что необходимо знать при зарядке АКБ

Заряжая автомобильный аккумулятор, важно соблюдать ряд правил. Это поможет вам продлить срок службы аккумулятора и сохранить своё здоровье:

  1. Все свинцовые аккумуляторы заряжают током не выше одной десятой от ёмкости батареи. Если у вас в авто стоит АКБ ёмкостью 60 А/ч, то расчёт зарядного тока выглядит так: 60/10=6 А.
  2. В процессе зарядки могут выделяться взрывоопасные газы. Особенно это касается обслуживаемых аккумуляторов. Достаточно одной искры, чтобы скопившийся в гараже или другом помещении водород взорвался. Поэтому заряжать аккумуляторы нужно в хорошо проветриваемом помещении или на балконе.
  3. Зарядка батареи сопровождается выделением тепла, поэтому постоянно контролируйте температуру корпуса АКБ на ощупь. Если батарея заметно нагрелась, то немедленно уменьшите зарядный ток или вообще прекратите зарядку.
  4. Если батарея обслуживаемая, постоянно контролируйте уровень электролита в банках и его плотность. В процессе заряда электролит «выкипает», а плотность повышается. Если пластины в банке оголились или плотность поднялась выше 1.29, а зарядка ещё не закончена, добавьте в электролит дистиллированной воды.
  5. Не допускайте перезарядки батареи. Максимальное напряжение на ней при подключённом ЗУ — 14.7 В.
  6. Не допускайте глубокой разрядки батареи, подзаряжайте её периодически. Если напряжение на батарее при отключённой нагрузке опустится ниже 10.7, АКБ придётся выбросить.

Вопрос о создании простого зарядного устройство для аккумулятора своими руками выяснен. Все достаточно просто, осталось запастись необходимым инструментом и можно смело приступать к работе.

Всем привет друзья, в этой записи хочу рассказать вам про стабилизатор тока для зарядного устройства который сможет собрать своими руками практически каждый.

LM317

Применение LM317 (крен) даже не требует каких либо навыков и знаний по электронике. Количество внешних элементов в схемах минимально, поэтому это доступный вариант для любого. Её цена очень низкая, возможности и применение многократно испытаны и проверены. Только она требует хорошего охлаждения, это её основной недостаток. Единственное стоит опасаться низкокачественных китайских микросхем ЛМ317, которые имеют параметры похуже.

Микросхемы линейной стабилизации из-за отсутствия лишних шумов на выходе, использовал для питания высококачественных ЦАП класса Hi-Fi и Hi-End. Для ЦАП огромную роль играет чистота питания, поэтому некоторые используют аккумуляторы для этого.


Схема стабилизации до 10 ампер

Максимальная сила для LM317 составляет 1,5 Ампера. Для увеличения количества ампер можно добавить в схему полевой транзистор или обычный. На выходе можно будет получить до 10А, задаётся низкоомным сопротивлением. На данной схеме основную нагрузку на себя берёт транзистор КТ825.

Другой способ, это поставить аналог с более высокими техническими характеристиками на большую систему охлаждения.

Многофункциональный прибор

Среднюю сложность изготовления имеют драйверы для светодиодов на 220 В. Много времени может занять их настройка, требующая опыта по наладке. Такой драйвер извлечь можно из светодиодных ламп, прожекторов и светильников с неисправной светодиодной цепью. Большинство из них также возможно доработать, узнав модель контроллера преобразователя. Параметры обычно задаются одним или несколькими резисторами.

Ещё недавно высокой популярностью пользовался универсальный модуль XL4015. По своим характеристикам он подходит для подключения светодиодов с высокой мощностью (до 100 Ватт). Стандартный вариант его корпуса припаян к плате, выполняющей функции радиатора. Чтобы улучшить охлаждение XL4015, схема должна быть доработана с установкой радиатора на коробку устройства.

Многие пользователи просто ставят его сверху, однако, эффективность такой установки довольно низкая. Систему охлаждения желательно располагать внизу платы, напротив пайки микросхемы. Для оптимального качества её можно отпаять и установить на полноценный радиатор, используя термопасту. Провода потребуется удлинить. Дополнительное охлаждение можно монтировать и для диодов, что значительно повысит эффективность работы всей схемы.

Среди драйверов наиболее универсальным считается регулируемый. Обязательно устанавливается переменный резистор, который задаёт количество ампер. Эти характеристики обычно указываются в следующих документах:

  • В сопроводительной документации к микросхеме.
  • В datasheet.
  • В стандартной схеме включения.

Без добавочного охлаждения микросхемы такие устройства выдерживают 1—3 А (в соответствии с моделью контроллера широтно-импульсной модуляции). Главный недостаток этих драйверов — чрезмерный нагрев диода и дросселя. Выше 3 А потребуется охлаждение мощного диода и контроллера. Дроссель заменяют более подходящим либо перематывают толстым проводом.

Стабилизированный регулируемый блок питания с защитой от перегрузок

Множество радиолюбительских блоков питания (БП) выполнено на микросхемах КР142ЕН12, КР142ЕН22А, КР142ЕН24 и т.п. Нижний предел регулировки этих микросхем составляет 1,2…1,3 В, но иногда необходимо напряжение 0,5…1 В. Автор предлагает несколько технических решений БП на базе данных микросхем.

Интегральная микросхема (ИМС) КР142ЕН12А (рис.1) представляет собой регулируемый стабилизатор напряжения компенсационного типа в корпусе КТ-28-2, который позволяет питать устройства током до 1,5 А в диапазоне напряжений 1,2…37 В. Этот интегральный стабилизатор имеет термостабильную защиту по току и защиту выхода от короткого замыкания.

Рис.1. ИМС КР142ЕН12А

На основе ИМС КР142ЕН12А можно построить регулируемый блок питания, схема которого (без трансформатора и диодного моста) показана на рис.2. Выпрямленное входное напряжение подается с диодного моста на конденсатор С1. Транзистор VT2 и микросхема DA1 должны располагаться на радиаторе. Теплоотводящий фланец DA1 электрически соединен с выводом 2, поэтому если DA1 и транзистор VD2 расположены на одном радиаторе, то их нужно изолировать друг от друга. В авторском варианте DA1 установлена на отдельном небольшом радиаторе, который гальванически не связан с радиатором и транзистором VT2.


Рис.2. Регулируемый БП на ИМС КР142ЕН12А

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]