Устройство компьютерных блоков питания и методика их тестирования

Лабораторный блок питания (ЛБП), представленный в этой статье, имеет простую, но в то же время надежную и хорошо повторяемую схему. В качестве основных компонентов устройства используются биполярные транзисторы. ЛБП может служить для: тестирования силовых транзисторов, питания светодиодов (LED-панелей), зарядки различных типов аккумуляторов, питания электронных устройств напряжением 0–40В и током до 2,5А.

В качестве защиты от короткого замыкания лабораторного блока питания используется стабилизация выходного тока. Порог максимального тока можно установить с помощью подстроечного резистора в пределе 0,5–2,5А. Регулировка тока нагрузки в процессе эксплуатации выполняется от нуля до установленного порога с помощью переменного резистора.

Верхний предел выходного напряжения также может быть установлен с помощью подстроечного резистора в диапазоне 10–40В. Регулировка выходного напряжения в процессе эксплуатации осуществляется переменным резистором от нуля до установленного порога.

⇡#Линейный и импульсный источники питания

Начнем с основ. Блок питания в компьютере выполняет три функции. Во-первых, переменный ток из бытовой сети электропитания нужно преобразовать в постоянный. Второй задачей БП является понижение напряжения 110-230 В, избыточного для компьютерной электроники, до стандартных значений, требуемых конвертерами питания отдельных компонентов ПК, – 12 В, 5 В и 3,3 В (а также отрицательные напряжения, о которых расскажем чуть позже). Наконец, БП играет роль стабилизатора напряжений.

Есть два основных типа источников питания, которые выполняют перечисленные функции, – линейный и импульсный. В основе простейшего линейного БП лежит трансформатор, на котором напряжение переменного тока понижается до требуемого значения, и затем ток выпрямляется диодным мостом.

Однако от БП требуется еще и стабилизация выходного напряжения, что обусловлено как нестабильностью напряжения в бытовой сети, так и падением напряжения в ответ на увеличение тока в нагрузке.

Чтобы компенсировать падение напряжения, в линейном БП параметры трансформатора рассчитываются так, чтобы обеспечить избыточную мощность. Тогда при высоком токе в нагрузке будет наблюдаться требуемый вольтаж. Однако и повышенное напряжение, которое возникнет без каких-либо средств компенсации при низком токе в полезной нагрузке, тоже неприемлемо. Избыточное напряжение устраняется за счет включения в цепь неполезной нагрузки. В простейшем случае таковой является резистор или транзистор, подключенный через стабилитрон (Zener diode). В более продвинутом – транзистор управляется микросхемой с компаратором. Как бы то ни было, избыточная мощность просто рассеивается в виде тепла, что отрицательно сказывается на КПД устройства.


Пример линейного источника питания со стабилизатором. Избыточная мощность рассеивается на транзисторе Q1

В схеме импульсного БП возникает еще одна переменная, от которой зависит напряжение на выходе, в дополнение к двум уже имеющимся: напряжению на входе и сопротивлению нагрузки. Последовательно с нагрузкой стоит ключ (которым в интересующем нас случае является транзистор), управляемый микроконтроллером в режиме широтно-импульсной модуляции (ШИМ). Чем выше длительность открытых состояний транзистора по отношению к их периоду (этот параметр называется duty cycle, в русскоязычной терминологии используется обратная величина – скважность), тем выше напряжение на выходе. Из-за наличия ключа импульсный БП также называется Switched-Mode Power Supply (SMPS).

Через закрытый транзистор ток не идет, а сопротивление открытого транзистора в идеале пренебрежимо мало. В действительности открытый транзистор обладает сопротивлением и рассеивает какую-то часть мощности в виде тепла. Кроме того, переход между состояниями транзистора не идеально дискретный. И все же КПД импульсного источника тока может превышать 90%, в то время как КПД линейного БП со стабилизатором в лучшем случае достигает 50%.


Простейшая схема импульсного преобразователя AC/DC с трансформатором

Другое преимущество импульсных источников питания состоит в радикальном уменьшении габаритов и массы трансформатора по сравнению с линейными БП такой же мощности. Известно, что чем выше частота переменного тока в первичной обмотке трансформатора, тем меньше необходимый размер сердечника и число витков обмотки. Поэтому ключевой транзистор в цепи размещают не после, а до трансформатора и, помимо стабилизации напряжения используют для получения переменного тока высокой частоты (для компьютерных БП это от 30 до 100 кГц и выше, а как правило – около 60 кГц). Трансформатор, работающий на частоте электросети 50-60 Гц, для мощности, требуемой стандартным компьютером, был бы в десятки раз массивнее.

Линейные БП сегодня применяются главным образом в случае маломощных устройств, когда относительно сложная электроника, необходимая для импульсного источника питания, составляет более чувствительную статью расходов в сравнении с трансформатором. Это, к примеру, блоки питания на 9 В, которые используются для гитарных педалей эффектов, а когда-то – для игровых приставок и пр. А вот зарядники для смартфонов уже сплошь импульсные – тут расходы оправданны. Благодаря существенно меньшей амплитуде пульсаций напряжения на выходе линейные БП также применяются в тех областях, где это качество востребованно.

Мощность

По полезной мощности, отдаваемой в нагрузку, все лабораторные блоки питания постоянного тока можно разделить на стандартные (до 700 Вт) и большой мощности (700 Вт и более). Такое деление не случайно. Модели стандартной и большой мощности довольно сильно отличаются по функциональным возможностям и области применения.

В моделях стандартной мощности максимальное напряжение обычно находится в диапазоне от 15 В до 150 В, а максимальный ток от 1 А до 25 А. Количество каналов: один, два или три. Есть как линейные, так и импульсные модели. Конструктивное исполнение: стандартный приборный корпус для размещения на лабораторном столе. Масса от 2 до 15 кг. Типичный пример: серия Tektronix PWS4000. В основном, возможности таких приборов нацелены на разработку и ремонт электронной аппаратуры, хотя область их применения значительно шире.

С другой стороны, модели большой мощности всегда одноканальные и импульсные. Модели до 3 кВт выпускаются в приборном или стоечном исполнении (типичный пример: серия ITECH IT6700H), а модели с мощностью 3 кВт и более мощные, монтируются только в промышленную стойку и отличаются значительной массой и габаритами. Например, масса модели на 18 кВт из серии ITECH IT6000C составляет 40 кг.

Большая мощность выдвигает повышенные требования к конструкции: наличие «умных» вентиляторов охлаждения, полный набор защит (от перегрузки, перегрева, смены полярности и пр.), возможность параллельного включения нескольких блоков для наращивания выходной мощности, поддержка специальных форм выходных сигналов (например, автомобильных стандартов DIN40839 и ISO-16750-2).

Для этой категории приборов является обязательной поддержка удалённого программного управления через один из интерфейсов: Ethernet, IEEE-488.2 (GPIB), USB, RS-232, RS-485 или CAN, так как они часто используются в составе автоматизированных комплексов. Также, некоторые серии (например IT6000C), могут регулировать своё выходное сопротивление в диапазоне от нуля до нескольких Ом, что очень полезно при имитации работы аккумуляторов и солнечных панелей. Кроме того, некоторые мощные модели могут содержать встроенную электронную нагрузку, что позволяет им не только генерировать ток, но и потреблять его.

Лабораторные блоки питания большой мощности используются в автомобильной промышленности, в альтернативной энергетике, при гальванической обработке металлов и во многих других отраслях, где необходимо формировать напряжения до 2 250 Вольт и токи до 2 040 Ампер.

Характеристики всех лабораторных блоков питания, отсортированных по мере увеличения максимальной мощности, смотрите здесь. А на этой фотографии Вы можете увидеть мощные выходные клеммы шестикиловаттной модели IT6533D, которая состоит из двух модулей по 3 кВт каждый, включенных параллельно. Равномерное распределение выходной мощности между модулями обеспечивается с помощью отдельной шины синхронизации System BUS (серый кабель слева).

Часть задней панели лабораторного блока питания ITECH IT6533D с максимальной мощностью 6 кВт.

⇡#Общая схема блока питания стандарта ATX

БП настольного компьютера представляет собой импульсный источник питания, на вход которого подается напряжение бытовой электросети с параметрами 110/230 В, 50-60 Гц, а на выходе есть ряд линий постоянного тока, основные из которых имеют номинал 12, 5 и 3,3 В. Помимо этого, БП обеспечивает напряжение -12 В, а когда-то еще и напряжение -5 В, необходимое для шины ISA. Но последнее в какой-то момент было исключено из стандарта ATX в связи с прекращением поддержки самой ISA.


Блок-схема импульсного БП

На упрощенной схеме стандартного импульсного БП, представленной выше, можно выделить четыре основных этапа. В таком же порядке мы рассматриваем компоненты блоков питания в обзорах, а именно:

  1. фильтр ЭМП – электромагнитных помех (RFI filter);
  2. первичная цепь – входной выпрямитель (rectifier), ключевые транзисторы (switcher), создающие переменный ток высокой частоты на первичной обмотке трансформатора;
  3. основной трансформатор;
  4. вторичная цепь – выпрямители тока со вторичной обмотки трансформатора (rectifiers), сглаживающие фильтры на выходе (filtering).


Внутреннее устройство БП (AeroCool KCAS-650M)


Полная схема простого блока питания стандарта ATX

⇡#Фильтр ЭМП

Фильтр на входе БП служит для подавления двух типов электромагнитных помех: дифференциальных (differential-mode) – когда ток помехи течет в разные стороны в линиях питания, и синфазных (common-mode) – когда ток течет в одном направлении.

Дифференциальные помехи подавляются конденсатором CX (крупный желтый пленочный конденсатор на фото выше), включенным параллельно нагрузке. Иногда на каждый провод дополнительно вешают дроссель, выполняющий ту же функцию (нет на схеме).

Фильтр синфазных помех образован конденсаторами CY (синие каплевидные керамические конденсаторы на фото), в общей точке соединяющими линии питания с землей, и т.н. синфазным дросселем (common-mode choke, LF1 на схеме), ток в двух обмотках которого течет в одном направлении, что создает сопротивление для синфазных помех.


Схема фильтра электромагнитных помех

В дешевых моделях устанавливают минимальный набор деталей фильтра, в более дорогих описанные схемы образуют повторяющиеся (полностью или частично) звенья. В прошлом нередко встречались БП вообще без фильтра ЭМП. Сейчас это скорее курьезное исключение, хотя, покупая совсем дешевый БП, можно, все-таки нарваться на такой сюрприз. В результате будет страдать не только и не столько сам компьютер, сколько другая техника, включенная в бытовую сеть, – импульсные БП являются мощным источником помех.

В районе фильтра хорошего БП можно обнаружить несколько деталей, защищающих от повреждения само устройство либо его владельца. Почти всегда есть простейший плавкий предохранитель для защиты от короткого замыкания (F1 на схеме). Отметим, что при срабатывании предохранителя защищаемым объектом является уже не блок питания. Если произошло КЗ, то, значит, уже пробило ключевые транзисторы, и важно хотя бы предотвратить возгорание электропроводки. Если в БП вдруг сгорел предохранитель, то менять его на новый, скорее всего, уже бессмысленно.

Отдельно выполняется защита от кратковременных скачков напряжения с помощью варистора (MOV – Metal Oxide Varistor). А вот никаких средств защиты от длительного повышения напряжения в компьютерных БП нет. Эту функцию выполняют внешние стабилизаторы со своим трансформатором внутри.


Фильтр электромагнитных помех (Antec VP700P)

Конденсатор в цепи PFC после выпрямителя может сохранять значительный заряд после отключения от питания. Чтобы беспечного человека, сунувшего палец в разъем питания, не ударило током, между проводами устанавливают разряжающий резистор большого номинала (bleeder resistor). В более изощренном варианте – вместе с управляющей схемой, которая не дает заряду утекать при работе устройства.

Кстати, наличие фильтра в блоке питания ПК (а в БП монитора и практически любой компьютерной техники он тоже есть) означает, что покупать отдельный «сетевой фильтр» вместо обычного удлинителя, в общем-то, без толку. У него внутри все то же самое. Единственное условие в любом случае – нормальная трехконтактная проводка с заземлением. В противном случае конденсаторы CY, соединенные с землей, просто не смогут выполнять свою функцию.

Дополнительная информация по этой теме

Мы специально не перегружали эту статью техническими деталями устройства лабораторных блоков питания и тщательным описанием их опций. Всё это Вы можете подробно прочитать на страницах отдельных серий приборов . А чтобы глубоко разобраться в этом вопросе и повысить свой профессиональный уровень, изучите документы по базовой теории применения лабораторных блоков питания.

Если Вам необходима подробная информация по ценам или техническая консультация по выбору оптимального блока питания для Вашей задачи, просто позвоните нам или напишите нам по E-mail и мы с радостью ответим на Ваши вопросы.

⇡#Блок активного PFC

В цепи переменного тока с линейной нагрузкой (как, например, лампа накаливания или электроплитка) протекающий ток следует такой же синусоиде, как и напряжение. Но это не так в случае с устройствами, имеющими входной выпрямитель, – такими как импульсные БП. Блок питания пропускает ток короткими импульсами, примерно совпадающими по времени с пиками синусоиды напряжения (то есть максимальным мгновенным напряжением), когда подзаряжается сглаживающий конденсатор выпрямителя.


Потребление тока импульсным БП

Сигнал тока искаженной формы раскладывается на несколько гармонических колебаний в сумме с синусоидой данной амплитуды (идеальным сигналом, который имел бы место при линейной нагрузке).

Мощность, используемая для совершения полезной работы (которой, собственно, является нагрев компонентов ПК), указана в характеристиках БП и называется активной. Остальная мощность, порождаемая гармоническими колебаниями тока, называется реактивной. Она не производит полезной работы, но нагревает провода и создает нагрузку на трансформаторы и прочее силовое оборудование.

Векторная сумма реактивной и активной мощности называется полной мощностью (apparent power). А отношение активной мощности к полной называется коэффициентом мощности (power factor) – не путать с КПД!

У импульсного БП коэффициент мощности изначально довольно низкий – около 0,7. Для частного потребителя реактивная мощность не составляет проблемы (благо она не учитывается электросчетчиками), если только он не пользуется ИБП. На бесперебойник как раз таки ложится полная мощность нагрузки. В масштабе офиса или городской сети избыточная реактивная мощность, создаваемая импульсными БП уже значительно снижает качество электроснабжения и вызывает расходы, поэтому с ней активно борются.


Электрическая схема и потребление тока блоком Active PFC

В частности, подавляющее большинство компьютерных БП оснащаются схемами активной коррекции фактора мощности (Active PFC). Блок с активным PFC легко опознать по единственному крупному конденсатору и дросселю, установленным после выпрямителя. В сущности, Active PFC является еще одним импульсным преобразователем, который поддерживает на конденсаторе постоянный заряд напряжением около 400 В. При этом ток из питающей сети потребляется короткими импульсами, ширина которых подобрана таким образом, чтобы сигнал аппроксимировался синусоидой – что и требуется для имитации линейной нагрузки. Для синхронизации сигнала потребления тока с синусоидой напряжения в контроллере PFC имеется специальная логика.

Схема активного PFC содержит один или два ключевых транзистора и мощный диод, которые размещаются на одном радиаторе с ключевыми транзисторами основного преобразователя БП. Как правило, ШИМ-контроллер ключа основного преобразователя и ключа Active PFC являются одной микросхемой (PWM/PFC Combo).


Блок Active PFC и входной выпрямитель (Antec VP700P)

Коэффициент мощности у импульсных блоков питания с активным PFC достигает 0,95 и выше. Кроме того, у них есть одно дополнительное преимущество – не требуется переключатель сети 110/230 В и соответствующий удвоитель напряжения внутри БП. Большинство схем PFC переваривают напряжения от 85 до 265 В. Кроме того, снижается чувствительность БП к кратковременным провалам напряжения.

Кстати, помимо активной коррекции PFC, существует и пассивная, которая подразумевает установку дросселя большой индуктивности последовательно с нагрузкой. Эффективность ее невелика, и в современном БП вы такое вряд ли найдете.

⇡#Основной преобразователь

Общий принцип работы для всех импульсных БП изолированной топологии (с трансформатором) один: ключевой транзистор (или транзисторы) создает переменный ток на первичной обмотке трансформатора, а ШИМ-контроллер управляет скважностью их переключения. Конкретные схемы, однако, различаются как по количеству ключевых транзисторов и прочих элементов, так и по качественным характеристикам: КПД, форма сигнала, помехи и пр. Но здесь слишком многое зависит от конкретной реализации, чтобы на этом стоило заострять внимание. Для интересующихся приводим набор схем и таблицу, которая позволит по составу деталей опознавать их в конкретных устройствах.

ТранзисторыДиодыКонденсаторыНожки первичной обмотки трансформатора
Single-Transistor Forward1114
Two-Transistor Forward2202
Half Bridge2022
Full Bridge4002
Push-Pull2003

Помимо перечисленных топологий, в дорогих БП встречаются резонансные (resonant) варианты Half Bridge, которые легко опознать по дополнительному крупному дросселю (или двум) и конденсатору, образующим колебательный контур.

Single-Transistor Forward Two-Transistor Forward Push-Pull
Full Bridge Half Bridge Resonant Half-Bridge

Видео


Кофе в капсулах Nescafe Dolce Gusto Cappuccino, 8 порций (16 капсул)

435 ₽ Подробнее


Кофе капсульный Nescafe Dolce Gusto Кафе О Ле Кофе с молоком, 3 упаковки по 16 капсул

1305 ₽ Подробнее

Внешние звуковые карты

⇡#Вторичная цепь

Вторичная цепь – это все, что находится после вторичной обмотки трансформатора. В большинстве современных блоков питания трансформатор имеет две обмотки: с одной из них снимается напряжение 12 В, с другой – 5 В. Ток сначала выпрямляется с помощью сборки из двух диодов Шоттки – одной или нескольких на шину (на самой высоконагруженной шине – 12 В — в мощных БП бывает четыре сборки). Более эффективными с точки зрения КПД являются синхронные выпрямители, в которых вместо диодов используются полевые транзисторы. Но это прерогатива по-настоящему продвинутых и дорогих БП, претендующих на сертификат 80 PLUS Platinum.

Шина 3,3 В, как правило, выводится от той же обмотки, что и шина 5 В, только напряжение понижается с помощью насыщаемого дросселя (Mag Amp). Специальная обмотка на трансформаторе под напряжение 3,3 В – экзотический вариант. Из отрицательных напряжений в текущем стандарте ATX осталось только -12 В, которое снимается со вторичной обмотки под шину 12 В через отдельные слаботочные диоды.

ШИМ-управление ключом преобразователя изменяет напряжение на первичной обмотке трансформатора, а следовательно – на всех вторичных обмотках сразу. При этом потребление тока компьютером отнюдь не равномерно распределено между шинами БП. В современном железе наиболее нагруженной шиной является 12-В.

Для раздельной стабилизации напряжений на разных шинах требуются дополнительные меры. Классический способ подразумевает использование дросселя групповой стабилизации. Три основные шины пропущены через его обмотки, и в результате если на одной шине увеличивается ток, то на других – падает напряжение. Допустим, на шине 12 В возрос ток, и, чтобы предотвратить падение напряжения, ШИМ-контроллер уменьшил скважность импульсов ключевых транзисторов. В результате на шине 5 В напряжение могло бы выйти за допустимые рамки, но было подавлено дросселем групповой стабилизации.

Напряжение на шине 3,3 В дополнительно регулируется еще одним насыщаемым дросселем.


Стабилизирующие дроссели и выходной фильтр (Antec VP700P)

В более совершенном варианте обеспечивается раздельная стабилизация шин 5 и 12 В за счет насыщаемых дросселей, но сейчас эта конструкция в дорогих качественных БП уступила место преобразователям DC-DC. В последнем случае трансформатор имеет единственную вторичную обмотку с напряжением 12 В, а напряжения 5 В и 3,3 В получаются благодаря преобразователям постоянного тока. Такой способ наиболее благоприятен для стабильности напряжений.


Преобразователь DC-DC для шины 5 В (CoolerMaster G650M)

Выходной фильтр

Финальной стадией на каждой шине является фильтр, который сглаживает пульсации напряжения, вызываемые ключевыми транзисторами. Кроме того, во вторичную цепь БП в той или иной мере пробиваются пульсации входного выпрямителя, чья частота равна удвоенной частоте питающей электросети.

В состав фильтра пульсаций входит дроссель и конденсаторы большой емкости. Для качественных блоков питания характерна емкость не менее 2 000 мкФ, но у производителей дешевых моделей есть резерв для экономии, когда устанавливают конденсаторы, к примеру, вдвое меньшего номинала, что неизбежно отражается на амплитуде пульсаций.

Как подобрать компоненты

Для трансформаторного источника подбирается, в первую очередь, трансформатор. В большинстве случаев он берется готовый из того, что есть. Этот узел должен выдавать требуемый ток при максимальном напряжении. Сочетание этих параметров обеспечивается габаритной мощностью трансформатора. Для промышленных устройств параметры можно узнать из справочника. Для случайных трансформаторов мощность можно определить по размерам сердечника (в сантиметрах).


Площадь сердечника для разных типов трансформаторов.

Мощность вычисляется по формуле:

P=S2/1.44 где:

  • P-мощность в Ваттах;
  • S- сечение в квадратных сантиметрах.

Для практических целей мощность надо еще умножить на КПД. Для примера, трансформатор с площадью сердечника 6 кв.см. при напряжении 35 вольт и выходном напряжении стабилизатора 30 вольт (общий КПД можно взять 0.75) способен отдать мощность P=(36/1.44)*0.75=18.75 ватт. Наибольший ток при этом составит I=P/U=18.75/35=0,5 А.

Если трансформатор проходит по мощности, но вторичная обмотка рассчитана на другое напряжение, ее можно удалить и намотать новую (если уместится). Количество витков рассчитывается так:

  • определяется количество витков на вольт по формуле 50/S, где S – площадь сердечника в кв.см.;
  • эта величина умножается на необходимый уровень напряжения.

Так, для площади 6 см на 1 вольт приходится 50/6=8,3 витка на вольт. Для напряжения 35 вольт обмотка должна иметь 35*8,3=291 виток. Диаметр провода рассчитывается по формуле D=0,02, где I – ток в миллиамперах. Для тока в 5 ампер надо взять провод диаметром 0,02*=70*0,02=1,4 мм.

Если для линейного регулятора подбирается мощный транзистор, основной критерий для применения – ток коллектора. Он должен с запасом перекрывать ток нагрузки. Этот параметр для распространенных отечественных и зарубежных транзисторов приведен в таблице.

ТранзисторНаибольший ток коллектора (постоянный), А
КТ818 (819)10
КТ825 (827)20
КТ8055
TIP3625
2N305515
MJE1300912

При работе в режимах, близких к максимальному току, транзисторы обязательно должны быть установлены на радиаторах.

Также надо обратить внимание на такой параметр, как максимальное напряжение между коллектором и эмиттером. При входном напряжении 35 вольт и выходном 1,5 разница составит 33,5 вольт, для некоторых полупроводниковых приборов это недопустимо.

Емкость оксидного конденсатора, стоящего после выпрямителя, выбирается исходя из нагрузки. Существуют формулы для расчета параметров фильтра, но на практике подход простой: чем больше, тем лучше. Сверху на емкость наложено два ограничения:

  • габариты конденсатора;
  • бросок тока на заряд, который может быть значительным при большой емкости.

Выходной конденсатор БП может иметь емкость около 1000 мкФ.

⇡#Дежурное питание +5VSB

Описание компонентов блока питания было бы неполным без упоминания об источнике дежурного напряжения 5 В, который делает возможным спящий режим ПК и обеспечивает работу всех устройств, которые должны быть включены постоянно. «Дежурка» питается от отдельного импульсного преобразователя с маломощным трансформатором. В некоторых БП встречается и третий трансформатор, использующийся в цепи обратной связи для изоляции ШИМ-контроллера от первичной цепи основного преобразователя. В других случаях эту функцию выполняют оптопары (светодиод и фототранзистор в одном корпусе).


Трансформаторы (Corsair HX750i)

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]