Простые звуковые генераторы синуса на цифровых КМОП микросхемах, а также функциональные генераторы НЧ сигналов синусоидальной, прямоугольной и треугольной форм.


В радиолюбительской практике часто возникает необходимости использовать генератор синусоидальных колебаний. Применения ему можно найти самые разнообразные. Рассмотрим как создать генератор синусоидального сигнала на мосту Вина со стабильной амплитудой и частотой.

В статье описывается разработка схемы генератора синусоидального сигнала. Сгенерировать нужную частоту можно и программно: Программа Audacity как простой генератор звука и шума

Наиболее удобным, с точки зрения сборки и наладки, вариантом генератора синусоидального сигнала является генератор, построенный на мосту Вина, на современном Операционном Усилителе (ОУ).

Мост Вина

Сам по себе мост Вина является полосовым фильтром, состоящим из двух RC фильтров. Он выделяет центральную частоту и подавляет остальные частоты.

Мост придумал, Макс Вин еще в 1891 году. На принципиальной схеме, сам мост Вина обычно изображается следующим образом:

Картинка позаимствована у Википедии

Мост Вина обладает отношением выходного напряжения ко входному b=1/3 . Это важный момент, потому что этот коэффициент определяет условия стабильной генерации. Но об этом чуть позже

Как рассчитать частоту

На мосту Вина часто строят автогенераторы и измерители индуктивности. Чтобы не усложнять себе жизнь обычно используют R1=R2=R и C1=C2=C. Благодаря этому можно упростить формулу. Основная частота моста рассчитывается из соотношения:

f=1/2πRC

Практически любой фильтр можно рассматривать как делитель напряжения, зависящий от частоты. Поэтому при выборе номиналов резистора и конденсатора желательно, чтобы на резонансной частоте комплексное сопротивление конденсатора (Z), было равно, или хотя бы одного порядка с сопротивлением резистора.

Zc=1/ωC=1/2πνC

где ω (омега) — циклическая частота, ν (ню) — линейная частота, ω=2πν

Мост Вина и операционный усилитель

Сам по себе мост Вина не является генератором сигнала. Для возникновения генерации его следует разместить в цепи положительной обратной связи операционного усилителя. Такой автогенератор можно построить и на транзисторе. Но использование ОУ явно упростит жизнь и даст лучшие характеристики.

Параметры

  • коэффициент усиления по току = выходной ток / входной ток;
  • коэффициент усиления по напряжению = выходное напряжение / входное напряжение;
  • коэффициент усиления по мощности = выходная мощность / входная мощность.

Для некоторых устройств вроде операционных усилителей значение этого коэффициента очень велико, но работать со слишком большими (равно как и со слишком малыми) числами при вычислениях неудобно, поэтому часто коэффициенты усиления выражают в логарифмических единицах.

Для этого применяются следующие формулы:

  • коэффициент усиления по мощности в логарифмических единицах = 10 * десятичный логарифм искомого коэффициента усиления по мощности;
  • коэффициент усиления по току в логарифмических единицах = 20 * десятичный логарифм искомого коэффициента усиления по току;
  • коэффициент усиления по напряжению в логарифмических единицах = 20 * десятичный логарифм искомого коэффициента усиления по напряжению;
  • коэффициент искажения сигнала.

Рассчитанные подобным образом коэффициенты измеряются в децибелах. Сокращенное наименование – дБ.

Разновидности мощности:

  1. Номинальная.
  2. Паспортная шумовая.
  3. Максимальная кратковременная.
  4. Максимальная долговременная.

Коэффициент усиления на троечку

Мост Вина имеет коэффициент пропускания b=1/3. Поэтому условием генерации является то, что ОУ должен обеспечивать коэффициент усиления равный трем. В таком случает произведение коэффициентов пропускания моста Вина и усиления ОУ даст 1. И будет происходить стабильная генерация заданной частоты.

Если бы мир был идеальным, то задав резисторами в цепи отрицательной обратной связи, нужный коэфф усиления, мы бы получили готовый генератор.

Это неинвертирующий усилитель и его коэффициент усиления определяется соотношением: K=1+R2/R1

Но увы, мир не идеален.… На практике оказывается, что для запуска генерации необходимо, чтобы в самый начальный момент коэфф. усиления был немного больше 3-х, а далее для стабильной генерации он поддерживался равным 3.

Если коэффициент усиления будет меньше 3, то генератор заглохнет, если больше — то сигнал, достигнув напряжения питания, начнет искажаться, и наступит насыщение.

При насыщении, на выходе будет поддерживаться напряжение, близкое к одному из напряжений питания. И будут происходить случайные хаотичные переключения между напряжениями питания.

Поэтому, строя генератор на мосте Вина, прибегают к использованию нелинейного элемента в цепи отрицательной обратной связи, регулирующего коэффициент усиления. В таком случае генератор будет сам себя уравновешивать и поддерживать генерацию на одинаковом уровне.

Блок фантомного питания

Потребовался источник фантомного питания для подключения конденсаторного микрофона к фотоаппарату. Сразу вопрос: ЗАЧЕМ? Затем, что фотик пишет звук куда лучше, чем встроенная звуковая карта компа, а микрофон конденсаторный просто уже был. Бюджетные внешние звуковые карты всё равно почти все требуют дополнительное фантомное питание. А те, что не требуют выпадают из рамок моего бюджета. Вот и решил попробовать заказать такой источник.

При подключении микрофона через него к фотику ни каких проблем, всё четко работает, всё четко, записывается. Однако первым делом всё же решил разобрать эту интересную коробочку. Корпус интересен тем, что купить её можно отдельно для своих радиоэлектронных нужд. Другой вопрос в цене, не очень он и дешев. Внутри такого корпуса можно расположить до трех печатных плат. Замечательная прям штука, если бы не цена).


Блок фантомного питания

Внутри блока фантомного питания платка из бюджетного текстолита, да и спаяна сама плата тоже весьма бюджетно. Однако ни каких помех на выходе при работе не наблюдается, во всяком случае таких помех, которые я бы мог измерить своим мультиметром. Напряжение на выходе +47В вместо +48, я не думаю что это так сильно критично. Во всяком случае работает всё должным образом.

Видим кучу электролитических конденсаторов никому не известного китайского производителя. Во всяком случае мне такой производитель не известен, а по работе я с производителями конденсаторов сталкиваюсь очень часто. Кстати о транзисторе и почему он не крепится ни на радиатор ни на корпус. Пол часика дал платке поработать контролируя температуру транзистора. Так он почти и не нагрелся в закрытом корпусе ситуация будет жестче, но я думаю его температура однозначно даже близко не подойдет к предельно допустимой.


Фантомное питание микрофона.

Кстати стоит отметить, что блок питания этого девайса трансформаторный, 18В, 600мА. Если кому лень читать, то всё то же самое есть в видео и в добавок можно оценить качество записи через этот блок фантомного питания. Качество записи сравнил при записи через блок питания и через встроенный микрофон фотоаппарата.

Стабилизация амплитуды на лампе накаливания

В самом классическом варианте генератора на мосте Вина на ОУ, применяется миниатюрная низковольтная лампа накаливания, которая устанавливается вместо резистора.

При включении такого генератора, в первый момент, спираль лампы холодная и ее сопротивление мало. Это способствует запуску генератора (K>3). Затем, по мере нагрева, сопротивление спирали увеличивается, а коэффициент усиления снижается, пока не дойдет до равновесия (K=3).

Цепь положительной обратной связи, в которую был помещен мост Вина, остается без изменений. Общая принципиальная схема генератора выглядит следующим образом:

Элементы положительной обратной связи ОУ определяют частоту генерации. А элементы отрицательной обратной связи — усиление.

Идея использования лампочки, в качестве управляющего элемента очень интересна и используется по сей день. Но у лампочки, увы, есть ряд недостатков:

  • требуется подбор лампочки и токоограничивающего резистора R*.
  • при регулярном использовании генератора, срок жизни лампочки обычно ограничивается несколькими месяцами
  • управляющие свойства лампочки зависят от температуры в комнате.

Другим интересным вариантом является применение терморезистора с прямым подогревом. По сути, идея та же, только вместо спирали лампочки используется терморезистор. Проблема в том, что его нужно для начала найти и опять таки подобрать его и токоограничиващие резисторы.

Стабилизация амплитуды на светодиодах

Эффективным методом стабилизации амплитуды выходного напряжения генератора синусоидальных сигналов является применение в цепи отрицательной обратной связи ОУ светодиодов (VD1 и VD2).

Основной коэффициент усиления задается резисторами R3 и R4. Остальные же элементы (R5, R6 и светодиоды) регулируют коэффициент усиления в небольшом диапазоне, поддерживая генерацию стабильной. Резистором R5 можно регулировать величину выходного напряжения в интервале примерное 5-10 вольт.

В дополнительной цепи ОС желательно использовать низкоомные резисторы (R5 и R6). Это позволит пропускать значительный ток (до 5мА) через светодиоды и они будут находиться в оптимальном режиме. Даже будут немного светиться

На показанной выше схеме, элементы моста Вина рассчитаны для генерации на частоте 400 Гц, однако они могут быть легко пересчитаны для любой другой частоты по формулам, представленным в начале статьи.

Чем больше мощность, тем хуже…

Часто радиолюбители стараются сделать свой усилитель как можно мощнее (типа, так круче), да и аудиофилы зачастую оснащают свои системы усилителями с мощностью в разы превышающей необходимую для озвучивания обычной комнаты до нормального уровня громкости, мотивируя тем, что так получается больший динамический диапазон. Такие усилители (большой мощности) порой решают одни проблемы, но создают другие.

Индуктивность проводников питания является основным «слабым звеном» усилителей мощности класса АВ. В таких усилителях выходные транзисторы включаются и выключаются поочередно, соответственно по плюсовой и минусовой шинам питания протекают полуволны зарядных токов.

Если эти импульсы через емкостные и индуктивные связи попадут в звуковой тракт это приводит к ужасному размытому звучанию.

Такое происходит, если какая-то чувствительная дорожка (проводник) проходит рядом с шиной питания. Бифилярная свивка проводов питания эффективно подавляет излучаемые помехи за счёт взаимной компенсации положительной и отрицательной полуволн.

На печатной плате этот метод можно реализовать, если шины питания расположить друг над другом с двухсторон платы (требуется двухсторонняяя печатная плата)

Достойный образец проектирования печатной платы для усилителя мощности — это конструкция Ultra-LD 200W, представленная в одном из номеров журнала «Практическая электроника каждый день». На печатной плате этого усилителя реализованы все рекомендации по монтажу, представленные в данном цикле статей. И во многом за счёт этого удалось получить уровень шумов -122 дБ и уровень нелинейных искажений ниже 0,001%.

Примечание редакции РадиоГазеты: если нашим читателям интересно, пишите в комментариях и мы опубликуем описание этого усилителя.

Заземление одной стороны печатной платы хорошо работает в высокочастотных и слаботочных конструкциях. Для усилителей мощности это не подходит, потому как трудно предсказать протекание токов в зависимости от выбора точек заземления.

В современных ламповых усилителях часто общую шину делают в виде отрезка тостого лужёного провода. Многие гуру проповедуют разводку звездой с единственной точкой подключения. Бывают случаи, когда при таком подходе усилители плохо работают. Сказывает большое количество длинных проводов, которые снижают стабильность конструкции.

Как правило, в хорошем усилителе есть несколько точек заземления.

Качество генерации и применяемых элементов

Важно, чтобы операционный усилитель мог обеспечить необходимый для генерации ток и обладал достаточной полосой пропускания по частоте. Использование в качестве ОУ народных TL062 и TL072 дало очень печальные результаты на частоте генерации 100кГц. Форму сигнала было трудно назвать синусоидальной, скорее это был треугольный сигнал. Использование TDA 2320 дало еще более худший результат.

А вот NE5532 показа себя с отличной стороны, выдав на выходе сигнал очень похожий на синусоидальный. LM833 так же справилась с задачей на отлично. Так что именно NE5532 и LM833 рекомендуются к использованию как доступные и распространенные качественные ОУ. Хотя с понижением частоты гораздо лучше себя будут чувствовать и остальные ОУ.

Точность частоты генерации напрямую зависит от точности элементов частотозависимой цепи. И в данном случае важно не только соответствие номинала элемента надписи на нем. Более точные детали имеют лучшую стабильность величин при изменении температуры.

В авторском варианте были применены резистор типа С2-13 ±0.5% и слюдяные конденсаторы точностью ±2%. Применение резисторов указанного типа обусловлено малой зависимостью их сопротивления от температуры. Слюдяные конденсаторы так же мало зависят от температуры и имеют низкий ТКЕ.

Минусы светодиодов

На светодиодах стоит остановиться отдельно. Их использование в схеме синус генератора вызвано величиной падения напряжения, которое обычно лежит в интервале 1.2-1.5 вольта. Это позволяет получать достаточно высокое значение выходного напряжения.

После реализации схемы, на макетной плате, выяснилось, что из-за разброса параметров светодиодов, фронты синусоиды на выходе генератора не симметричны. Это немного заметно даже на приведенной выше фотографии. Помимо этого присутствовали небольшие искажения формы генерируемого синуса, вызванные недостаточной скоростью работы светодиодов для частоты генерации 100 кГц.

Транзисторные УНЧ

Транзисторные усилители мощности низкой частоты (УМЗЧ) для звуковой и аудио-аппаратуры. В разделе собраны принципиальные схемы самодельных усилителей мощности НЧ на биполярных и полевых транзисторах.

Здесь вы найдете схемы транзисторных усилителей разной сложности и с разным классом мощности:

  • низкой мощности — до 1,5 Ватт;
  • средней мощности — от 1,5 Ватт до 20 Ватт;
  • большой мощности — 25 Ватт, 50 Ватт, 100 Ватт, 200 Ватт, 300 Ватт и более.

Для самодельного аудио-комплекса или при ремонте музыкального центра можно изготовить многоканальный усилитель мощности в конфигурациях:

  • система 2.1 (сабвуфер + 2 сателлита);
  • система 5.1 (сабвуфер + 5 сателлитов);
  • стерео — два канала усиления;
  • квадро — четыре канала усиления.

На транзисторах можно без лишних сложностей собрать небольшой самодельный усилитель для наушников. Присутствуют очень простые и доступные по себестоимости конструкции усилителей, которые прекрасно подойдут для изготовления начинающими радиолюбителями.

Усилитель НЧ с двойной термостабилизацией (LME49860, 2SD2394, 2SB1565)

Схема самодельного усилителя мощности НЧ с двойной термостабилизацией, выполнен на микросхеме LME49860 и транзисторах 2SD2394, 2SB1565 на выходе. В моей практике бывали случаи, когда выходные транзисторы УНЧ с защитой только по температуре перегревались и сгорали. Приходилось добавлять термозащиту еще и по току. Вот такая схема двойной защиты…

2 2532 0

Экономичный УМЗЧ на транзисторах 2SC3331V, 2SA1286, 2SA928A, 2SD2058Y (13Вт)

При ремонте современных усилителей мощности низкой частоты, собранных с применением интегральных микросхем, не всегда есть возможность приобрести требуемые микросхемы или найти подходящие в радиолюбительских закромах. В таком случае можно взамен неисправной микросхемы изготовить несложный в сборке …

2 3620 0

Схема УМЗЧ на пяти транзисторах и с однополярным питанием (60W)

Обычно, если требуется сделать УМЗЧ быстро и без лишних деталей радиолюбители обращают внимание на микросхемы -интегральные УМЗЧ. Действительно, — положительный результат сразу при минимуме деталей и времени на сборку. Однако, УМЗЧ быстро и относительно «без лишних деталей», можно сделать …

1 7204 0

Простой усилитель ЗЧ на трех транзисторах, схема (КТ3102, КТ816, КТ817)

Усилитель построен по простой схеме на трех транзисторах. На выходе, на нагрузке сопротивлением 4 Ом выдает мощность 2W при питании от источника напряжением 12V. Входное сопротивление усилителя мало, и составляет 470 Ом. Столь малое входное сопротивление позволяет ему хорошо согласовываться …

4 11084 16

Гибридный УМЗЧ на лампах ECC88, 6Н23П и микросхемах LM3875 (30Вт)

Схема самодельного гибридного усилителя звука на лампах и микросхемах с выходной мощностью 30 Ватт. Усилитель построен на лампе ECC88 (отечественный аналог — 6Н23П) и мощной микросхеме LM3875.

3 4000 7

Схема мощного гитарного усилителя на транзисторах TIP142 и TIP147 (60Вт)

Принципиальная схема гитарного усилителя мощности низкой частоты с предусилителем и темброблоком. УМЗЧ собран на транзисторах TIP142 и TIP147, выходная мощность — 40Вт на 8 Ом, 60 Вт на 4 Ома.

3 4574 2

Простые высококачественные усилители мощности НЧ на МДП-транзисторах

Несколько принципиальных схем высококачественных УМЗЧ на полевых транзисторах, привлекающие своей простотой и техническими характеристиками. Применение полевых транзисторов в усилителе мощности позволяет значительно повысить качество звучания при общем упрощении схемы…

6 10038 1

Стерео усилитель звуковой частоты на MOSFET транзисторах (200Вт)

Схема электрическая принципиальная усилителя приведена на рисунке (в скобках приведены замененные элементы). Данная конструкция является модернизациейразработки [1]. Принципиальная схема УМЗЧ на MOSFET транзисторах (200Вт). Все основные части усилителя — трансформатор, радиаторы …

7 7397 1

Усилитель мощности звука со стабилизированным источником питания (200Вт на 4Ом)

При разработке усилителей ЗЧ с максимальной выходной мощностью более 100 Вт первостепенноезначение приобретает необходимость получения возможно большего КПД усилителя при достаточно малых нелинейных искажениях. Вопрос о допустимом проценте нелинейных искажений усилителя ЗЧ не раз обсуждался на …

4 7439 0

Несколько схем транзисторных УМЗЧ, хронология радиолюбителя

Свое знакомство с мощными усилителями я начал в 1958 году, когда учился в энергетическомтехникуме, и мне поручили обслуживать радиоузел. Он состоял из трех частей: малогабаритной радиотрансляционной установки “ТУ-100″, магнитофона “Днепр 9” и ЛАТРа на …

3 10227 0

1 …

Диоды 4148 вместо светодиодов

Светодиоды были заменены на всеми любимые диоды 4148. Это доступные быстродействующие сигнальные диоды со скоростью переключения менее 4 нс. Схема при этом осталась полноценно работоспособной, от описанных выше проблем не осталось и следа, а синусоида приобрела идеальный вид.

На следующей схеме элементы моста вина рассчитаны на частоту генерации 100 кГц. Так же переменный резистор R5 был заменен на постоянные, но об этом позже.

В отличие от светодиодов, падение напряжения на p-n переходе обычных диодов составляет 0.6÷0.7 В, поэтому величина выходного напряжения генератора составила около 2.5 В. Для увеличения выходного напряжения возможно включение нескольких диодов последовательно, вместо одного, например вот так:

Однако увеличение количества нелинейных элементов сделает генератор более зависимым от внешней температуры. По этой причине было решено отказаться от такого подхода и использовать по одному диоду.

Понадобится

Транзисторы мощности и операционный усилитель:

  • 2SC5200 Транзисторы х 5 — https://ali.pub/4xjey2
  • 2SA1943 Транзисторы х 5 — https://ali.pub/4xjf1k
  • ОУ HA17741 x 1 — https://ali.pub/4xjf4h

Остальные компоненты: Показать / Скрыть текст

  • SC 2SC2073 Транзисторы х 2.
  • S 2SA940 Транзисторы х 2.
  • 3 0,33 / 5 Вт резисторы х 10.
  • 4.7 / 1W резисторы x 10.
  • резисторы 10/2 Вт x 2.
  • резисторы 100/1 Вт х 6.
  • резисторы 330/1 Вт х 2.
  • 10 резисторов х 1.
  • 100 резисторов х 1.
  • 1K резисторы х 1.
  • 5K6 резисторов х 2.
  • резисторы 10К х 2.
  • 47К резисторов х 1.
  • резисторы 100К х 1.
  • 33P конденсаторы х 1.
  • конденсаторы 220P x 4.
  • 680P конденсаторы х 1.
  • 0.1 мкФ конденсаторы х 1.
  • 10 мкФ / 50 В конденсаторы х 2.
  • 100 мкФ / 25 В конденсаторы х 3.
  • 10.000 мкФ / 80 В конденсаторы х 2 или х 4.
  • Диод 4148 х 2.
  • Диодный мост 35A X 1.
  • Стабилитрон 15V X 2.
  • Катушка 16 витков (медная проволока диаметром 1,5мм).
  • 50 К Потенциометры х 1.
  • Слюдяная изоляция транзисторов x 10.
  • Алюминиевый радиатор х 1.
  • Трансформатор 45 — 50 В переменного тока 2 x 30A.

Советуем к прочтению: Стабилизатор AMS1117-3

Замена переменного резистора постоянными

Теперь о подстроечном резисторе. Изначально в качестве резистора R5 был применен многооборотный подстроечный резистор на 470 Ом. Он позволял точно регулировать величину выходного напряжения.

Использование переменного резистора в подобных цепях нежелательно по двум основным причинам:

  • ненадежность подвижного контакта
  • наличие у многооборотных подстроечных резисторов паразитной индуктивности, которая может отрицательно сказаться на качестве выходного сигнала

При построении любого генератора крайне желательно наличие осциллографа. Переменный резистор R5 напрямую влияет на генерацию — как на амлитуду так и на стабильность.

Для представленной схемы генерация стабильна лишь в небольшом интервале сопротивлений этого резистора. Если соотношение сопротивлений больше требуемого — начинается клиппинг, т.е. синусоида будет подрезаться сверху и снизу. Если меньше — форма синусоиды начинает искажаться, а при дальнейшем уменьшении генерация глохнет.

Так же это зависит от используемого напряжения питания. Описываемая схема исходно была собрана на ОУ LM833 с питанием ±9В. Затем, без изменения схемы, ОУ были заменены на AD8616, а напряжение питания на ±2,5В (максимум для этих ОУ). В итоге такой замены синусоида на выходе подрезалась. Подбор резисторов дал значения 210 и 165 ом, вместо 150 и 330 соответственно.

Как подобрать резисторы «на глаз»

В принципе можно оставить и подстроечный резистор. Все зависит от требуемой точности и генерируемой частоты синусоидального сигнала.

Для самостоятельного подбора следует, в первую очередь, установить подстроечный резистор номиналом 200-500 Ом. Подав выходной сигнал генератора на осциллограф и вращая подстроечный резистор дойти до момента когда начнется ограничение.

Затем понижая амплитуду найти положение, в котором форма синусоиды будет наилучшей.Теперь можно выпаять подстроечник, замерить получившиеся величины сопротивлений и впаять максимально близкие значения.

Если вам требуется генератор синусоидального сигнала звуковой частоты, то можно обойтись и без осциллографа. Для этого, опять таки, лучше дойти до момента когда сигнал, на слух, начнет искажаться из-за подрезания, а затем убавить амплитуду. Убавлять следует до тех пор пока искажения не пропадут, а затем еще немного. Это необходимо т.к. на слух не всегда можно уловить искажения и в 10%.

Дополнительное усиление

Генератор синуса был собран на сдвоенном ОУ, и половина микросхемы осталась висеть в воздухе. Поэтому логично задействовать ее под регулируемый усилитель напряжения. Это позволило перенести переменный резистор из дополнительной цепи ОС генератора в каскад усилителя напряжения для регулировки выходного напряжения.

Применение дополнительного усилительного каскада гарантирует лучшее согласование выхода генератора с нагрузкой. Он был построен по классической схеме неинвертирующего усилителя.

Указанные номиналы позволяют изменять коэффициент усиления от 2 до 5. При необходимости номиналы можно пересчитать под требуемую задачу. Коэффициент усиления каскада задается соотношением:

K=1+R2/R1

Резистор R1 представляет из себя сумму последовательно включенных переменного и постоянного резисторов. Постоянный резистор нужен, чтобы при минимальном положении ручки переменного резистора коэффициент усиления не ушел в бесконечность.

Схема микрофонного усилителя на микросхеме

Существует много конструкций микрофонного усилителя на микросхеме. Чаще всего в устройствах применяются операционные усилители, но имеются интегральные компоненты представляющие собой готовый микрофонный канал. Примером такой конструкции является специализированная малошумящая микросхема усилитель микрофонаMAX9814.Она имеет следующие параметры:

  • Программируемый коэффициент усиления – 40, 50 и 60 дБ
  • Гармонические искажения – 0,04%
  • Встроенный источник питания для электретного микро – 2 В
  • Температурный диапазон — +80- –400С
  • Имеется автоматическая регулировка усиления

Для самостоятельного повторения подойдут схемы на интегральных операционниках.

Схема собрана на отечественном ОУ 157УД2. Это микросхема с очень маленьким уровнем собственных шумов не критичная к напряжению питания.

Высококачественный канал предназначен для работы с электретными микрофона всех типов. В нём используется ОУ BA4558 или JRS4558. Конденсаторы С1 и С4 по 0,22 мкФ. Схема отличается высокой чувствительностью. Не требует регулировки и начинает работать сразу после подачи напряжения питания. В следующем устройстве используется микросхема для микрофона К538УН3Б.

Она очень простая, так как в ней отсутствуют резисторы и для её сборки потребуется только микросхема и четыре конденсатора. Напряжение питания можно снизить до 3 вольт без больших потерь усиления. При повторении конструкций нужно выполнять подключение усилителя микрофона экранированным проводом и экран соединить с корпусом устройства.

Как умощнить выход

Генератор предполагался для работы на низкоомную нагрузку в несколько Ом. Разумеется ни один маломощный ОУ не сможет выдать необходимый ток.

Для умощнения, на выходе генератора разместился повторитель на TDA2030. Все вкусности такого применения этой микросхемы описаны в статье Схема повторителя напряжение на ОУ. Мощный повторитель напряжения на TDA2030.

А вот так собственно выглядит схема всего синусоидального генератора с усилителем напряжения и повторителем на выходе:

Генератор синуса на мосту Вина можно собрать и на самой TDA2030 в качестве ОУ. Все зависит от требуемой точности и выбранной частоты генерации.

Если нет особых требований к качеству генерации и требуемая частота не превышает 80-100 кГц, но при этом предполагается работа на низкоомную нагрузку, то этот вариант вам идеально подойдет.

Результат

Ранее что-то не задалось у меня с измерениями искажений. Много позже, когда пообзавёлся HiRes ЦАП-АЦП, перемерил. Получилось не то, чтобы плохо, но как источник для измерения Кг в аудио данная схема явно не тянет. Синус схемка выдаёт, конечно, красивый.

Мост Вина + LM324 + CCS: сигнал на выходе

Результаты обмеров: THD 1.5%,

2-я гармоника -36дБ, 3-я -64дБ, 4-я -89дБ.

На одной макетке ужились два генератора — синусоидального и пилообразного сигналов:

TLС555CP + LM324 = два генератора
Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]