Схема генератора высокой частоты, который вырабатывает сигналы в диапазоне от 10 до 50 МГц. Сигнал можно промодулировать по частоте подав НЧ напряжение от ГНЧ или микрофона. Девиация частоты зависит от величины этого напряжения ЗЧ. Если нужна девиация 50-100 кГц, то, при крайне верхнем .
Принципиальная схема самодельного генератора логических импульсов с частотой от 1 Гц до 10КГц, собран на микросхеме 4011 (К561ЛА7). При ремонте и налаживании схем на цифровых микросхемах может быть очень полезен генератор логических импульсов. В общем, это генератор прямоугольных импульсов .
Низкочастотный генератор синусоидального сигнала – очень важный прибор в лаборатории любого радиолюбителя.Возможно, такой уже есть у всех. Но все же хочу познакомить читателей журнала со своим генератором. Генератор выполнен в виде самостоятельного прибора, питающегося от электросети. Но шкала .
Простой самодельный генератор-пробник, с регулировкой выходной частоты от 100 Гц до 10000 Гц, выполнен на микросхеме К561ЛА7. Если нужно экспромтом проверить прохождение сигнала по аудиотракту многие корифеи пользуются собственным пальцем как генератором НЧ (50 Гц сетевых наводок), регулируя .
Принципиальная схема самодельного широкодиапазонного генератора синусоидального сигнала для лабораторных целей, выполнен на микросхеме МАХ038. Синусоидальный генератор является одним из важнейших приборов лаборатории радиолюбителя. Обычно делаютдва генератора, низкочастотный и высокочастотный .
Принципиальная схема простого генератора плавного диапазона на микросхеме HC4046, Частота до 50 MHz. Микросхема НС4046 (а так же аналогиMM74HC4046N, MJM74HC4046 и другие) представляет собой RC-генератор с ФАПЧ, способный генерировать стабильную частоту до 50 MHz, что позволяет сделать ГПД .
Приведена принципиальная схема низкочастотного генератора сигналов, который выполнен на ОУ КР140УД708. Низкочастотный генератор является одним из необходимейших приборов врадиолюбительской лаборатории. С его помощью можно налаживать различные усилители, снимать АЧХ, проводить эксперименты .
Для питания электронных часов, а возможно и другой аппаратуры производства США и некоторых других стран, необходимо напряжение со стабильной частотой 60 Гц При наличии кварцевого резонатора на частоту 1966 08 кГц получить его несложно (см., например, статью В. Полякова “Преобразователь .
Предлагаемая конструкция генератора может быть использована при настройке каскадов радиоприемников, различных аналоговых и цифровых устройств. Генератор формирует низкочастотные (НЧ) и высокочастотные (ВЧ) синусоидальные и прямоугольные колебания. Диапазон ВЧ колебаний 0,15. 1,6 МГц с плавной .
Формирователь содержит RC-триггер, собранный на логических элементах 2И-НЕ, интегрирующую цепь R1, R2, С1 и инвертор на транзисторе V1. При высоком логическом уровне на входе формирователя на выходе 1 появится высокий логический уровень, а на выходе 2 — низкий. При поступлении на вход .
Схема генератора высокой частоты, который вырабатывает сигналы в диапазоне от 10 до 50 МГц. Сигнал можно промодулировать по частоте подав НЧ напряжение от ГНЧ или микрофона. Девиация частоты зависит от величины этого напряжения ЗЧ. Если нужна девиация 50-100 кГц, то, при крайне верхнем .
Принципиальная схема самодельного генератора логических импульсов с частотой от 1 Гц до 10КГц, собран на микросхеме 4011 (К561ЛА7). При ремонте и налаживании схем на цифровых микросхемах может быть очень полезен генератор логических импульсов. В общем, это генератор прямоугольных импульсов .
Низкочастотный генератор синусоидального сигнала – очень важный прибор в лаборатории любого радиолюбителя.Возможно, такой уже есть у всех. Но все же хочу познакомить читателей журнала со своим генератором. Генератор выполнен в виде самостоятельного прибора, питающегося от электросети. Но шкала .
Простой самодельный генератор-пробник, с регулировкой выходной частоты от 100 Гц до 10000 Гц, выполнен на микросхеме К561ЛА7. Если нужно экспромтом проверить прохождение сигнала по аудиотракту многие корифеи пользуются собственным пальцем как генератором НЧ (50 Гц сетевых наводок), регулируя .
Принципиальная схема самодельного широкодиапазонного генератора синусоидального сигнала для лабораторных целей, выполнен на микросхеме МАХ038. Синусоидальный генератор является одним из важнейших приборов лаборатории радиолюбителя. Обычно делаютдва генератора, низкочастотный и высокочастотный .
Принципиальная схема простого генератора плавного диапазона на микросхеме HC4046, Частота до 50 MHz. Микросхема НС4046 (а так же аналогиMM74HC4046N, MJM74HC4046 и другие) представляет собой RC-генератор с ФАПЧ, способный генерировать стабильную частоту до 50 MHz, что позволяет сделать ГПД .
Мост Вина
Сам по себе мост Вина является полосовым фильтром, состоящим из двух RC фильтров. Он выделяет центральную частоту и подавляет остальные частоты.
Мост придумал, Макс Вин еще в 1891 году. На принципиальной схеме, сам мост Вина обычно изображается следующим образом:
Картинка позаимствована у Википедии
Мост Вина обладает отношением выходного напряжения ко входному b=1/3 . Это важный момент, потому что этот коэффициент определяет условия стабильной генерации. Но об этом чуть позже
Как рассчитать частоту
На мосту Вина часто строят автогенераторы и измерители индуктивности. Чтобы не усложнять себе жизнь обычно используют R1=R2=R и C1=C2=C. Благодаря этому можно упростить формулу. Основная частота моста рассчитывается из соотношения:
Практически любой фильтр можно рассматривать как делитель напряжения, зависящий от частоты. Поэтому при выборе номиналов резистора и конденсатора желательно, чтобы на резонансной частоте комплексное сопротивление конденсатора (Z), было равно, или хотя бы одного порядка с сопротивлением резистора.
Zc=1/ωC=1/2πνC
где ω (омега) — циклическая частота, ν (ню) — линейная частота, ω=2πν
Мост Вина и операционный усилитель
Сам по себе мост Вина не является генератором сигнала. Для возникновения генерации его следует разместить в цепи положительной обратной связи операционного усилителя. Такой автогенератор можно построить и на транзисторе. Но использование ОУ явно упростит жизнь и даст лучшие характеристики.
Re: Усилитель для DDS Генератора сигналов.
———- Сообщение добавлено 11.43 ———- Предыдущее сообщение было 11.40 ———-
У меня тоже есть ДДС генератор с 14 битным ЦАПом, но мне 100 ватт не нужно, хотел себе какой-нибудь ушной композитник прикрутить, да все времени нет
———- Сообщение добавлено 12.02 ———- Предыдущее сообщение было 11.43 ———-
Я вот все к Хантеку присматриваюсь, по идее, если там ЦАП действительно 16 бит, то если сделать ему нормальный выхлоп, можно очень не плохой прибор получить.
———- Сообщение добавлено 12.02 ———- Предыдущее сообщение было 12.02 ———-
Коэффициент усиления на троечку
Мост Вина имеет коэффициент пропускания b=1/3. Поэтому условием генерации является то, что ОУ должен обеспечивать коэффициент усиления равный трем. В таком случает произведение коэффициентов пропускания моста Вина и усиления ОУ даст 1. И будет происходить стабильная генерация заданной частоты.
Если бы мир был идеальным, то задав резисторами в цепи отрицательной обратной связи, нужный коэфф усиления, мы бы получили готовый генератор.
Это неинвертирующий усилитель и его коэффициент усиления определяется соотношением: K=1+R2/R1
Но увы, мир не идеален.… На практике оказывается, что для запуска генерации необходимо, чтобы в самый начальный момент коэфф. усиления был немного больше 3-х, а далее для стабильной генерации он поддерживался равным 3.
Если коэффициент усиления будет меньше 3, то генератор заглохнет, если больше — то сигнал, достигнув напряжения питания, начнет искажаться, и наступит насыщение.
При насыщении, на выходе будет поддерживаться напряжение, близкое к одному из напряжений питания. И будут происходить случайные хаотичные переключения между напряжениями питания.
Поэтому, строя генератор на мосте Вина, прибегают к использованию нелинейного элемента в цепи отрицательной обратной связи, регулирующего коэффициент усиления. В таком случае генератор будет сам себя уравновешивать и поддерживать генерацию на одинаковом уровне.
Принципиальная схема
Максимальный выходной уровень (положение 1/1 S2) синусоидального напряжения (RMS) 3,1 V. Соответственно в других положениях S2 максимальный выходной сигнал (RMS) составляет 310mV и 31mV. Питается генератор от электросети через встроенный источник питания на маломощном силовом трансформаторе.
Схема генератора представляет собой УНЧ с двухтактным выходным каскадом, охваченный положительной обратной связью RC-схемой моста Винна. Частота определяется переменными резисторами R2 1 и R2.2, являющимися составляющими частями сдвоенного переменного резистора, используемого как орган плавной настройки частоты в пределах выбранного диапазона. И конденсаторов, переключаемых сдвоенным переключателем S1.1-S1.2.
Рис. 1. Принципиальная схема лабораторного генератора сигнала низкой частоты 15 Гц — 160 КГц.
При монтаже переменные резисторы нужно паять так, чтобы при вращении рукоятки их сопротивления менялись одинаково (при неправильном включении при вращении рукоятки сопротивление одного переменного резистора будет уменьшаться в то время как сопротивление другого будет расти).
Чем ближе характеристики регулировки резисторов, составляющих блок переменных резисторов, тем меньшие искажения сигнала будут на выходе. Это же касается и конденсаторов, образующих мост Винна, — их емкости одновременно работающие в одном диапазоне должны быть максимально одинаковы (С1=С5, С2=С6, C3=С7, С4=С8 с увеличением неравенства этих емкостей возрастают искажения).
Коэффициент нелинейных искажений не более 0,3% во всем диапазоне частот (при условии тщательной настройки генератора, и малом разносе емкостей и резисторов плеч моста Винна).
При наличии только моста Винна схема усилителя (генератора) будет выходить на режим ограничения сигнала То есть, в данном случае, это перегрузка, которая обрежет вершины синусоид и сигнал будет более похож на прямоугольный, чем на синусоидальный.
Поэтому необходима так же и система отрицательной обратной связи, которая будет снижать коэффициент передачи усилителя так чтобы размах выходного сигнала не вылезал в зоны ограничения и нелинейности.
К тому же, должна быть автоматическая регулировка глубины ООС, придерживающая коэффициент передачи на оптимальной величине, которая здесь образована резисторами R7, R6, R5, а так же конденсатором С9. Элементом, регулирующим глубину ООС является лампа накаливания Н1.
Как известно, сопротивление лампы накаливания сильно зависит от тока через неё, так как ток вызывает нагрев нити из высокоомного сплава металла Чем больше ток, тем больше нагрев и тем больше сопротивление лампочки. Здесь лампа включена в цепи ООС, при увеличении сопротивления в этой цепи глубина ООС увеличивается и коэффициент передачи усилителя снижается.
Через лампу протекает выходной переменный ток, поэтому от его величины зависит и нагрев лампы. Таким образом происходит стабилизация выходного уровня сигнала в пределах линейного участка характеристики усилителя НЧ.
Усилитель, составляющий основу ГНЧ построен на транзисторах по трехкаскадной схеме с мостовым выходным каскадом и непосредственными связями между каскадами.
Для устранения «ступеньки» напряжение смещения на базах VT3 и VТ4 различаются на величину, заданную цепью из трех диодов VD1-VD3. Плавная регулировка выходного сигнала осуществляется переменным резистором R11, ступенчатая, — переключателем S2, переключающим резисторы делителя R12-R14.
Источник питания вырабатывает двухполярное постоянное напряжение около + 11V. В источнике питания используется маломощный силовой трансформатор Т1 с одной вторичной обмоткой на напряжение 9V. Для того чтобы от такого трансформатора получить двухполярное напряжение здесь используется два одно-полупериодных выпрямителя на диодах VD4 и VD5.
В результате для формирования положительного постоянного напряжения используется положительная полуволна переменного тока, а для формирования отрицательного постоянного напряжения используется отрицательная полуволна переменного тока.
Стабилизация амплитуды на лампе накаливания
В самом классическом варианте генератора на мосте Вина на ОУ, применяется миниатюрная низковольтная лампа накаливания, которая устанавливается вместо резистора.
При включении такого генератора, в первый момент, спираль лампы холодная и ее сопротивление мало. Это способствует запуску генератора (K>3). Затем, по мере нагрева, сопротивление спирали увеличивается, а коэффициент усиления снижается, пока не дойдет до равновесия (K=3).
Стабилизация амплитуды на светодиодах
Эффективным методом стабилизации амплитуды выходного напряжения генератора синусоидальных сигналов является применение в цепи отрицательной обратной связи ОУ светодиодов (VD1 и VD2).
Основной коэффициент усиления задается резисторами R3 и R4. Остальные же элементы (R5, R6 и светодиоды) регулируют коэффициент усиления в небольшом диапазоне, поддерживая генерацию стабильной. Резистором R5 можно регулировать величину выходного напряжения в интервале примерное 5-10 вольт.
В дополнительной цепи ОС желательно использовать низкоомные резисторы (R5 и R6). Это позволит пропускать значительный ток (до 5мА) через светодиоды и они будут находиться в оптимальном режиме. Даже будут немного светиться