Обычно блок питания компьютера имеет 6 или 5 коннекторов: 4 (4х пиновых) для питания приводов и 2 (6ти пиновых) (AT) или 1 (20ти пиновый) (ATX) — для материнской платы.
Разъемы питания материнской платы
AT разъемы питания материнской платы
P8 № | Сигнал | Цвет |
1 | Power Good | оранжевый |
2 | +5В | красный |
3 | +12В | желтый |
4 | -12В | голубой |
5 | корпус | черный |
6 | корпус | черный |
№
Сигнал | Цвет | |
1 | корпус | черный |
2 | корпус | черный |
3 | -5В | белый |
4 | +5В | красный |
5 | +5В | красный |
6 | +5В | красный |
ATX разъем питания материнской платы
№ | Сигнал | № | Сигнал |
1* | +3,3 В | 11 | +3,3 В |
2 | +3,3 В | 12 | -12 В |
3 | Земля | 13* | Земля |
4 | +5 В | 14* | Power Supply On |
5 | Земля | 15 | Земля |
6 | +5 В | 16 | Земля |
7 | Земля | 17 | Земля |
8 | Power Good | 18 | -5 В |
9 | +5 В Standby | 19 | +5 В |
10 | +12 В | 20 | +5 В |
Разъем питания приводов
№ | Сигнал | Цвет |
1 | +12В | желтый |
2 | корпус | черный |
3 | корпус | черный |
4 | +5В | красный |
Распиновка проводов по цветам: терминология
Итак, разберемся в значении терминов: фаза и нейтраль и ноль. Энергосистема имеет 3-х фазное строение, напряжение между парой любых фаз — составляет 380 В. Чтобы сбить количество напряжения до стандартных 220 В, в установках жилищного типа был создан 0-вой провод. Фазное напряжение между нейтральной жилой и проводом под 380 В будет равно разности потенциалов со знакомым числом 220 В.
Цветовая гамма токоведущих жил по ПУЭ:
- красная;
- коричневая;
- черная;
- серая;
- белая;
- розовая;
- оранжевая;
- бирюзовая;
- фиолетовая.
Европейский стандарт по цветовой маркировке
Здесь содержится много расцветок проводов, кроме тех нескольких элементов, которые являются предназначенными исключительно для обозначения нулевых и защитных проводов:
- синий цвет и его оттенки — рабочий нулевой провод (нейтраль — N);
- желтый цвет с зеленой полосой — защитное заземление (PE);
- желто-зеленая изоляция с голубыми метками на концах жил — совмещенный (PEN) проводник.
Допускается использование для заземления жил с изоляцией зеленого цвета с желтой полосой, а для совмещенных проводников изоляции голубого цвета с желто-зелеными метками на концах.
Сварка инвертором для начинающих: как научиться делать правильный сварной шов, сварочное оборудование
Разъемы для подключения клавиатуры
Внимание! контакты нумеруются не по кругу, обращайте внимание на цифру, стоящую возле контакта.
DIN5 | PS/2 | |
№ | Сигнал | Назначение |
1 | Тактовая частота | Выход |
2 | Линия данных | Вход/Выход |
3 | Сброс | — |
4 | Корпус | Вход |
5 | +5В | Вход |
Сигнал | Вход/Выход | |
1 | Линия данных | Вход/Выход |
2 | Не подключен | Резерв |
3 | Корпус | Вход |
4 | +5В | Вход |
5 | Тактовая частота | Выход |
6 | Не подключен | Резерв |
Раскладка IEE 1394 на материнке
IEEE 1394 – последовательная высокоскоростная шина данных. Разные компании используют для её названия бренды Firewire у Apple, i.LINK у SONY и т.д. К разработке приложила руку компания Aplle. По своей сути разъем похож на USB. Данный порт, по всей видимости, не получит широкого распространения из-за лицензионных выплат на каждый чип для этого порта в пользу компании Apple.
Разъем кабеля USB
№ | Сигнал | № | Сигнал |
A1 | Vcc | B1 | Vcc |
A2 | Port0 data+ | B2 | Port1 data+ |
A3 | Port0 data- | B3 | Port1 data- |
A4 | GND | B4 | GND |
Цепи переменного и постоянного тока, таблицы: распиновка проводов по цветам, буквам и цифрам
Для того, чтобы лучше разобраться в распиновке проводов, представляем вашему вниманию таблицы, где обозначены цветовые и буквенно-цифровые фазировки, нуля, заземления в различных электрических цепях.
Электрическая цепь переменного тока Электрическая цепь постоянного тока
Как правильно сообщать данные за электроэнергию: как передавать, когда и каким способом
Разъем RJ-45 (для соединения витой парой)
(кабель направлен от смотрящего)
При соединении компьютер — хаб используется раскладка «нормально». При каскадировании хабов или при подключении компьютер — компьютер (без хаба) используется раскладка «uplink» на одном конце кабеля, и «нормально» на другом.
№ | нормально | uplink |
1 | коричневый | коричневый |
2 | бело-коричневый | бело-коричневый |
3 | зеленый | оранжевый |
4 | бело-синий | бело-синий |
5 | синий | синий |
6 | бело-зеленый | бело-оранжевый |
7 | оранжевый | зеленый |
8 | бело-оранжевый | бело-зеленый |
Блок питания компьютера
Распиновка разъема БП формата AT
Распиновка разьема БП формата ATX
Распиновка разъемов дополнительного питания: АТХ разъёмы, SerialATA (или просто SATA, для подключения приводов и хардов), Разъёмы для дополнительного питания процессора, Разъём для флоппи дисковода, MOLEX(для подключения хардов и приводов):
Другой вариант:
Ещё один вариант для БП видеокарт:
- Подробнее про распиновку разъемов питания компьютера читайте тут
Кабель для подключения дисководов
Жилы с 10 по 16 перекручены — необходимо для идентификации дисковода.
Нечетные контакты — корпус.
№ | Вход/Выход | Сигнал | Значение |
2 | Вход | High/normal density | Высокая/нормативная плотность записи |
4 | Вход | Unused | Спецификация производителя |
6 | Вход | Unused | Спецификация производителя |
8 | Выход | Index | Идентификация индексного отверстия |
10 | Вход | Motor Enable 0 | Двигатель дисковода A: включен |
12 | Вход | Drive Select 1 | Активизация привода B: |
14 | Вход | Drive Select 0 | Активизация привода A: |
16 | Вход | Motor Enable 1 | Двигатель дисковода B: включен |
18 | Вход | Direction Select | Указание направления для головки |
20 | Вход | Step | Импульс для движения головки |
22 | Вход | Write Data | Запись данных |
24 | Вход | Write Gate | Сигнал для перезаписи данных |
26 | Выход | Track 00 | Головка стоит на нулевой дорожке |
28 | Выход | Write Protect | Наличие защиты диска от записи |
30 | Выход | Read Data | Чтение данных |
32 | Вход | Side Select | Доступ на первую или вторую сторону |
34 | Выход | Drive Status | Готовность привода |
Разъемы данных (Южный мост)
IDE (Integrated Drive Electronics)
По правильному называется – ATA/ATAPI – Advanced Technology Attachment Packet Interface, используется для подключения хардов и приводов.
SATA и eSATA разъёмы
Одно и то-же, разница только в форме разъёма, это разъём данных, для подключения хардов и приводов.
DVD slim sata
DVD slim sata (распиновка стандарта мини сата).
Кабель для подключения IDE устройств
Контакт | Вход/Выход | Сигнал | Значение |
1 | Выход | Reset | Сброс |
2 | — | GND | Корпус |
3 | Вход/Выход | HD7 | Линия данных 7 |
4 | Вход/Выход | HD8 | Линия данных 8 |
5 | Вход/Выход | HD6 | Линия данных 6 |
6 | Вход/Выход | HD9 | Линия данных 9 |
7 | Вход/Выход | HD5 | Линия данных 5 |
8 | Вход/Выход | HD10 | Линия данных 10 |
9 | Вход/Выход | HD4 | Линия данных 4 |
10 | Вход/Выход | HD11 | Линия данных 11 |
11 | Вход/Выход | HD3 | Линия данных 3 |
12 | Вход/Выход | HD12 | Линия данных 12 |
13 | Вход/Выход | HD2 | Линия данных 2 |
14 | Вход/Выход | HD13 | Линия данных 13 |
15 | Вход/Выход | HD1 | Линия данных 1 |
16 | Вход/Выход | HD14 | Линия данных 14 |
17 | Вход/Выход | HD0 | Линия данных 0 |
18 | Вход/Выход | HD15 | Линия данных 15 |
19 | — | GND | Корпус |
20 | — | KEY | Ключ разъема (отсутствует) |
21 | — | Reserved | Зарезервировано |
22 | — | GND | Корпус |
23 | Выход | IOW | Строб чтения |
24 | — | GND | Корпус |
25 | Выход | IOR | Строб записи |
26 | — | GND | Корпус |
27 | Вход | IOCHRDY | Готовность канала ввода/вывода |
28 | Выход | ALE | Строб адреса |
29 | — | Reserved | Зарезервировано |
30 | — | GND | Корпус |
31 | Вход | IRQ14 | Запрос на прерывание |
32 | Вход | HIO16 | Признак обращения к 16-разрядному порту |
33 | Выход | HA1 | Линия адреса 1 |
34 | Вход/Выход | Reserved | Зарезервировано |
35 | Выход | HA0 | Линия адреса 0 |
36 | Выход | HA2 | Линия адреса 2 |
37 | Выход | CS0 | Выбор диска 1 |
38 | Выход | CS1 | Выбор диска 2 |
39 | Вход/Выход | ACTIV | Подтверждение выбора диска |
40 | — | GND | Корпус |
Таймеры (ШИМ)
Выводы таймеров: в микроконтроллере, помимо обычного вычислительного ядра, с которым мы работаем, находятся также “хардварные” счётчики, работающие параллельно со всем остальным железом. Эти счётчики также называют таймерами, хотя к таймерам они не имеют никакого отношения: счётчики буквально считают количество тиков, которые делает кварцевый генератор, задающий частоту работы для всей системы. Зная частоту генератора (обычно 16 МГц) можно с очень высокой точностью определять интервалы времени и делать что-то на этой основе. Какой нам прок от этих счётчиков? “Из коробки” под названием Arduino IDE мы имеем несколько готовых, основанных на таймерах инструментов (функции времени, задержек, измерения длин импульсов и другие).
В этой статье речь идёт о пинах и выходах, о них и поговорим: у каждого счётчика есть два выхода на GPIO. У нано (у МК ATmega328p) три счётчика, соответственно 6 выходов. Одной из возможностей счётчиков является генерация ШИМ сигнала, который и выводится на соответствующие GPIO. Для нано это D пины 5 и 6 (счётчик 0), 9 и 10 (таймер 1) и 3 и 11 (таймер 2). ШИМ сигналу посвящен отдельный урок, сейчас просто запомним, что с его помощью можно управлять яркостью светодиодов, скоростью вращения моторчиков, мощностью нагрева спиралей и многим другим. Но нужно помнить, что ограничение по току в 40 мА никуда не делось и питать от пинов ничего мощнее светодиодов нельзя.
Параллельный интерфейс
Назначение контактов разъемов кабеля Centronics
25 pin | 36 pin | Сигнал | Вход/Выход | Значение |
1 | 1 | STROBE | Выход | Готовность данных |
2 | 2 | D0 | Выход | 1 бит данных |
3 | 3 | D1 | Выход | 2 бит данных |
4 | 4 | D2 | Выход | 3 бит данных |
5 | 5 | D3 | Выход | 4 бит данных |
6 | 6 | D4 | Выход | 5 бит данных |
7 | 7 | D5 | Выход | 6 бит данных |
8 | 8 | D6 | Выход | 7 бит данных |
9 | 9 | D7 | Выход | 8 бит данных |
10 | 10 | ACK | Вход | Контроль приема данных |
11 | 11 | BUSY | Вход | Принтер не готов к приему (занят) |
12 | 12 | PE | Вход | Конец бумаги |
13 | 13 | SLCT | Вход | Контроль состояния принтера |
14 | 14 | AF | Выход | Автоматический перевод строки (LF) после перевода каретки (CR) |
15 | 32 | ERROR | Вход | Ошибка |
16 | 31 | INIT | Выход | Инициализация принтера |
17 | 36 | SLCT IN | Выход | Принтер в состоянии on-line |
18 | 33 | GND | — | Корпус |
19 | 19 | GND | — | Корпус |
20 | 20 | GND | — | Корпус |
21 | 21 | GND | — | Корпус |
22 | 22 | GND | — | Корпус |
23 | 23 | GND | — | Корпус |
24 | 24 | GND | — | Корпус |
25 | 25 | GND | — | Корпус |
— | 15 | GND/NC | — | Корпус/свободный |
— | 16 | GND/NC | — | Корпус/свободный |
— | 17 | GND | — | Корпус для монтажной платы принтера |
— | 18 | +5V DC | Вход | +5 В |
— | 26 | GND | — | Корпус |
— | 27 | GND | — | Корпус |
— | 28 | GND | — | Корпус |
— | 29 | GND | — | Корпус |
— | 30 | GND | — | Корпус |
— | 34 | NC | — | Свободный |
— | 35 | +5V DC/NC | — | +5 В/свободный |
Особенности распиновки
При разговоре о цоколевке USB-разъёма необходимо разобраться в обозначениях, указанных на схемах. Начать стоит с вида коннектора — активный (тип А) либо пассивный (тип В). С помощью активного разъема возможен обмен информацией в двух направлениях, и пассивный позволяет только ее принимать. Также следует различать две формы соединителя:
- F — «мама».
- M — «папа».
Коннектор стандарта USB
Сначала несколько слов нужно сказать о совместимости трех версий интерфейса. Стандарты 1.1 и 2.0 полностью аналогичны конструктивно и отличаются только скоростью передачи информации. Если в соединении одна из сторон имеет старшую версию, то работа будет проводиться с низкой скоростью. При этом ОС выведет следующее сообщение: «Это устройство способно работать быстрее».
С совместимостью 3.0 и 2.0 все несколько сложнее. Устройство или кабель второй версии можно подключить к новому разъему, а обратная совместимость существует только у активных разъемов типа А. Следует заметить, что интерфейс ЮСБ позволяет подавать на подключенный гаджет напряжение в 5 В при силе тока не более 0,5 А. Для стандарта USB 2.0 распайка по цветам слева направо имеет следующий вид:
- Красный — положительный контакт постоянного напряжения в 5 В.
- Белый — data-.
- Зеленый — data+.
- Черный — общий провод или «земля».
Схема разъема достаточно проста, и при необходимости починить его будет несложно. Так как в версии 3.0 увеличилось количество контактов, то и его распиновка отличается от предыдущего стандарта. Таким образом, цветовая схема контактов имеет следующий вид:
- Красный — 5 В+.
- Белый — данные-.
- Зеленый — данные+.
- Черный — общий.
- Фиолетовый — прием-.
- Оранжевый — прием+.
- Без цвета — земля.
- Синий — передача-.
- Желтый — передача+.
Разъемы micro и mini
Коннекторы этого форм-фактора имеют пять контактов, один из которых задействован не всегда. Проводники зеленого, черного, красного и белого цветов выполняют аналогичные USB 2.0 функции. Распиновка mini-USB соответствует цоколевки micro-USB. В разъемах типа А фиолетовый проводник замкнут с черным, а в пассивных он не используется.
Эти коннекторы появились благодаря выходу на рынок большого количества устройств небольших габаритов. Так как они внешне похожи, часто у пользователей возникают сомнения о принадлежности разъема к тому либо иному форм-фактору. Кроме некоторого отличия в габаритах, у микро-ЮСБ на задней стороне расположены защелки.
Миниатюризация коннектора негативно повлияла на надежность. Хотя mini-USB и обладает большим ресурсом, через довольно короткий временной отрезок он начинает болтаться, но при этом из гнезда не выпадает. Микро-ЮСБ представляет собой доработанную версию mini-USB. Благодаря улучшенному креплению он оказался более надежным. Начиная с 2011 года этот коннектор стал единым стандартом для зарядки всех мобильных устройств.
Однако производители вносят в схему некоторые изменения. Так, распиновка микро-USB разъема для зарядки iPhone предполагает два изменения в сравнении со стандартной. В этих девайсах красный и белый провода соединяются с черным через сопротивление 50 кОм, а с белым — 75 кОм. Также есть отличия от стандарта и у смартфонов Samsung Galaxy. В нем белый и зеленый проводники замкнуты, а 5 контакт соединен с 4 с помощью резистора номиналом в 200 кОм.
Зная цоколевку различных видов коннекторов USB, можно найти и устранить неисправность. Чаще всего это требуется в ситуации, когда из строя вышло «родное» зарядное устройство, но у пользователя есть блок питания от смартфона другого производителя.
Последовательная передача данных
Назначение контактов разъемов последовательного интерфейса (RS-232)
DB9 | DB25 | Сигнал | Вход/Выход | Значение |
1 | 8 | DCD (Data Carrier Detect) | Вход | Обнаружение несущей данных |
2 | 3 | RXD (Recive Data) | Вход | Принимаемые данные |
3 | 2 | TXD (Transmit Data) | Выход | Передаваемые данные |
4 | 20 | DTR (Data Terminal Ready) | Выход | Готовность терминала |
5 | 7 | GND (Ground) | Корпус | Сигнальная земля |
6 | 6 | DSR (Data Set Ready) | Вход | Готовность модема |
7 | 4 | RTS (Request To Send) | Выход | Запрос передачи |
8 | 5 | CTS (Clear To Send) | Вход | Сброс для передачи |
9 | 22 | RI (Ring Indicator) | Вход | Индикатор звонка |
Схема распиновки
Назначение контактов микро-USB разъема — гнезда и штекера
Разъем USB (Universal Serial Bus) – это последовательная шина универсального назначения, наиболее распространённый проводной способ подсоединения внешних устройств к компьютеру. Данный разъем позволяет организовывать обмен данными между компьютером и видеокамерой, карт-ридером, MP3 — плеером, внешним жестким диском, смартфоном.
Распиновка USB кабеля по цветам
В описании к кабелям указывается его ориентация штекера по умолчание. Цоколевку определяют по внешней стороне. Если необходимо описать структуру с монтажной стороны, данный факт обязательно отмечают в технической документации. Изолирующие места помечают темно-серым цветом на разъеме и светло-серым на металлической части корпуса.
Советуем к прочтению: Подключение электродвигателя с 380 на 220: схемы и способы подключения электродвигателя с фото и видео
Фиолетовая маркировка применяется на проводах для зарядки и ДАТА-кабелях.
Pinout необходима для идентификации неисправной магистрали при ремонте. Она указывает на назначение того или иного компонента.
Распиновка USB 2.0 разъёма
Поскольку физически штекеры и гнезда ранних версий 1.1 и 2.0 не отличаются друг от друга, мы приведем распайку последней. Ниже представлен рисунок распайки штекера и гнезда разъема типа А:
Обозначения:
- А — гнездо.
- В — штекер.
- 1 — питание +5,0 В.
- 2 и 3 сигнальные провода.
- 4 — масса.
На рисунке раскраска контактов приведена по цветам провода, и соответствует принятой спецификации.
- Схема реобаса для ПК
Теперь рассмотрим распайку классического гнезда В.
Обозначения:
- А — штекер, подключаемый к гнезду на периферийных устройствах.
- В — гнездо на периферийном устройстве.
- 1 — контакт питания (+5 В).
- 2 и 3 — сигнальные контакты.
- 4 — контакт провода «масса».
Цвета контактов соответствуют принятой раскраске проводов в шнуре.
Технологическая структура интерфейса USB 2.0
Разъемы, относящиеся к изделиям, входящим в группу спецификаций 1.х – 2.0 (созданные до 2001 года), подключаются на четырехжильный электрический кабель, где два проводника являются питающими и ещё два – передающими данные.
Также в спецификациях 1.х – 2.0 распайка служебных ЮСБ разъемов предполагает подключение экранирующей оплётки – по сути, пятого проводника.
Так выглядит физическое исполнение нормальных разъёмов USB, относящихся ко второй спецификации. Слева указаны исполнения типа «папа», справа указаны исполнения типа «мама» и соответствующая обоим вариантам распиновка
Существующие исполнения соединителей универсальной последовательной шины отмеченных спецификаций представлены тремя вариантами:
- Нормальный – тип «А» и «В».
- Мини – тип «А» и «В».
- Микро – тип «А» и «В».
Разница всех трёх видов изделий заключается в конструкторском подходе. Если нормальные разъемы предназначены для использования на стационарной технике, соединители «мини» и «микро» сделаны под применение в мобильных устройствах.
Так выглядит физическое исполнение разъемов второй спецификации из серии «мини» и, соответственно, метки для разъемов Mini USB – так называемой распиновки, опираясь на которую, пользователь выполняет кабель-соединение
Поэтому два последних вида характеризуются миниатюрным исполнением и несколько измененной формой разъема.
Таблица распиновки стандартных соединителей типа «А» и «В»
Контакт | Спецификация | Проводник кабеля | Функция |
1 | Питание + | Красный (оранжевый) | + 5В |
2 | Данные – | Белый (золотой) | Data – |
3 | Данные + | Зеленый | Data + |
4 | Питание – | Черный (синий) | Земля |
Наряду с исполнением разъемов типа «мини-А» и «мини-В», а также разъемов типа «микро-А» и «микро-В», существуют модификации соединителей типа «мини-АВ» и «микро-АВ».
Отличительная черта таких конструкций – исполнение распайки проводников ЮСБ на 10-пиновой контактной площадке. Однако на практике подобные соединители применяются редко.
Таблица распиновки интерфейса Micro USB и Mini USB соединителей типа «А» и «В»
Контакт | Спецификация | Проводник кабеля | Функция |
1 | Питание + | Красный | + 5В |
2 | Данные – | Белый | Data – |
3 | Данные + | Зеленый | Data + |
4 | Идентификатор | – | Хост – устройство |
5 | Питание – | Черный | Земля |
Схема коннекторов для USB 2.0
На схеме можно увидеть несколько коннекторов, различающихся между собой по определенному признаку. К примеру, активное (питающее) устройство обозначается буквой А, а пассивное (подключаемое) устройство – буквой В. К активным относятся компьютеры и хосты, а пассивные составляют принтеры, сканеры и другие приборы. Принято также разделять коннекторы по полу: M (male) или «папа» представляет из себя штекер, а F(female) или «мама» – гнездо разъема. По размеру бывают форматы: mini, micro и без маркировки. К примеру, если встретится обозначение «USB micro-ВМ», то это значит, что штекер предназначен для подключения к пассивному устройству по формату micro.
Советуем к прочтению: Все о биполярных транзисторах: принцип действия и режим их работы, схемы включения и способы проверки на работоспособность
Для распиновки гнезд и штекеров понадобятся знания о назначении проводов в USB-кабеле:
- по красному VBUS («плюс») проходит постоянное напряжение 5 Вольт относительно GND. Минимальное значение силы электрического тока для него равно 500 mА;
- белый провод подсоединяют к «минусу» (D-);
- зеленый провод крепится к «плюсу» (D+);
- черный цвет провода означает, что напряжение в нем 0 Вольт, он несет минусовой заряд и используется для заземления.
В mini и micro форматах разъемы содержат по пять контактов: красный, черный, белый и зеленый провода, а также ID (который в разъемах типа А замкнут на GND, а в разъемах В – не задействован совсем).
Иногда в кабеле USB можно встретить и оголенный провод Shield. Этот провод не имеет номера.
Если в работе использовать таблицу, то разъем в ней показан с внешней (рабочей) стороны. Светло-серый цвет имеют изолирующие детали разъема, темно-серый цвет у металлических частей, а полости обозначены белым.
Для того, чтобы провести правильную распайку USB, нужно зеркально отобразить изображение лицевой части коннектора.
Разъемы у форматов mini и micro на USB состоят из пяти контактов. Поэтому четвертый контакт в разъемах типа В в работе использовать не придется. Этот контакт в разъемах типа А замыкается с GND, а для самого GND используют – пятый.
В результате не хитрых манипуляций можно самостоятельно сделать распиновку для портов USB разного формата.
Usb распайка версии 3.0 отличается добавлением четырех цветных проводов и дополнительного заземления. За счет этого кабель USB 3.0 заметно толще своего младшего собрата.
Схемы подключения USB девайсов друг к другу и распайка штекеров устройств:
- PS/2 К USB порту
- Джойстик Defender Game Racer Turbo USB-AM
- Распайка usb am и micro usb bm, для зарядки и передачи данных на компьютер
- USB-OTG
- Распайка USB SAMSUNG GALAXY TAB 2
Распиновка USB 3.0 разъёмов (типы A и B)
В третьем поколении подключение периферийных устройств осуществляется по 10 (9, если нет экранирующей оплетки) проводам, соответственно, число контактов также увеличено. Однако они расположены таким образом, чтобы имелась возможность подключения устройств ранних поколений. То есть, контакты +5,0 В, GND, D+ и D-, располагаются также, как в предыдущей версии. Распайка гнезда типа А представлена на рисунке ниже.
Обозначения:
- А — штекер.
- В — гнездо.
- 1, 2, 3, 4 — коннекторы полностью соответствуют распиновке штекера для версии USB 2.0 тип В, цвета проводов также совпадают.
- 5 (SS_TХ-) и 6 (SS_ТХ+) коннекторы проводов передачи данных по протоколу SUPER_SPEED.
- 7 — масса (GND) для сигнальных проводов.
- 8 (SS_RX-) и 9 (SS_RX+) коннекторы проводов приема данных по протоколу SUPER_SPEED.
Цвета на рисунке соответствуют общепринятым для данного стандарта. Как уже упоминалось выше, в гнездо данного порта можно вставить штекер более раннего образца, соответственно, пропускная способность при этом уменьшится. Что касается штекера третьего поколения универсальной шины, то всунуть его в гнезда раннего выпуска невозможно.
- Возможно,
Переходник с PS/2 на 9ти контактный RS232
PS/2 | RS232 |
1 | 1 |
2 | Не занят |
3 | 3, связан с контактом 5 |
4 | Связан с контактами 7 и 9 |
5 | 6 |
6 | Не занят |
Разъемы данных (Северный мост)
Более подробно про разъёмы PCI читайте по ссылке, там приводится в том числе и распиновка.
PCI Express: x1, x4, x8, x16
Если заклеить лишние контакты, то видеокарта PCI Express станет работать в режиме всего x1 PCI Express. Пропускная способность составляет 256 Мбайт/с в обоих направлениях.
Назначение выводов 9ти контактного разъема для подключения цифрового (TTL) монитора
№ | Сигнал цветного монитора (EGA) | Сигнал монохромного монитора (MDA) | Сигнал цветного монитора (CGA) |
1 | Корпус | Корпус | Корпус |
2 | Контрольный красный | Корпус | Корпус |
3 | Красный | Свободный | Красный |
4 | Зеленый | Свободный | Зеленый |
5 | Синий | Свободный | Синий |
6 | Контрольный зеленый | Интенсивность | Интенсивность |
7 | Контрольный синий | Видеосигнал | Видеосигнал |
8 | Сигнал синхронизации по горизонтали | Сигнал синхронизации по горизонтали | Сигнал синхронизации по горизонтали |
9 | Сигнал синхронизации по вертикали | Сигнал синхронизации по вертикали | Сигнал синхронизации по вертикали |
В завершении
При сборке или модернизации ПК всегда учитывайте совместную потребляемую мощность ваших комплектующих. Она не должна превышать мощность БП. Перегрузка БП может привести к сбою в работе машины, ее зависаниям, ошибкам «синего экрана» Windows (или аналогам в других ОС), непредвиденным перезагрузкам, повреждению БП.
Если вы собираете компьютер, смотрите на несколько лет вперед, учитывайте возможные модернизации и исходя из этого выбирайте соответствующий БП.
Не лишним будет напомнить, что любое нарушение целостности корпуса БП (например замена его вентилятора) и перепайка проводов, лишают вас гарантии. При самостоятельном выявлении неисправностей с БП или материнской платы, для замера мощности и напряжения используйте только качественные электроприборы.
Назначение выводов 15ти контактного разъема для подключения аналогового монитора
№ | Назначение | Сигнал цветного монитора | Сигнал монохромного монитора |
1 | Красный | Красный | Нет вывода |
2 | Зеленый | Зеленый | Вход видеосигнала |
3 | Синий | Синий | Нет вывода |
4 | Свободный | Свободный | Нет вывода |
5 | Корпус | Тестирование | Тестирование |
6 | Контрольный красный (корпус) | Контрольный красный | Контрольный красный |
7 | Контрольный зеленый (корпус) | Контрольный зеленый | Контроль видеосигнала |
8 | Контрольный синий (корпус) | Контрольный синий | Нет вывода |
9 | Управление | Нет вывода | Нет вывода |
10 | Контроль синхроимпульсов (корпус) | Корпус | Корпус |
11 | Сигнал ID монитора | Корпус | Нет вывода |
12 | Сигнал ID монитора | Свободный | Корпус |
13 | Синхронизация по горизонтали | Сигнал синхронизации по горизонтали | Сигнал синхронизации по горизонтали |
14 | Синхронизация по вертикали | Сигнал синхронизации по вертикали | Сигнал синхронизации по вертикали |
15 | Свободный | Нет вывода | Нет вывода |
Как устроен штекер для наушников
Если кабель перетёрся, порвался или оторвался штекер (штырек), устройство ремонтируется с помощью паяльника с расходниками и нового разъёма (если проблема в нём).
Наушники 3,5 мм
Так как 3,5-мм разъёмы неразборные, для ремонта придётся купить разборной, обжать кабель специальным хомутом, распаять контакты по показанной ниже схеме и собрать коннектор.
строение штекера 3,5 мм
Производители придерживаются стандартов в окраске изоляции:
- красный – левый динамик – первый контакт или кончик;
- зелёный – правый канал или кольцо;
- синий – спикер;
- бесцветный или медного цвета – масса;
- иной цвет – ведёт к панели управления (кнопкам).
В моделях подороже масса может быть у каждого канала свой: красно-медный – масса для левого канала, а зелёно-медный – для правого. Микрофонный кабель иногда экранируется плетёным кабелем, лакируется.
Раскраска изоляции нередко нарушается, поэтому ориентироваться на окраску – неправильно. Для определения, какой контакт какому каналу соответствует, наденьте наушники и прозванивайте все комбинации проводов поочерёдно, пока динамик не начнёт шуметь. Так можно определить массу и оба канала.
Сопротивление между наушниками вдвое больше, чем между «землёй» и аудиоканалом.
Схема наушников с микрофоном
Для гарнитуры схематичный рисунок выглядит иначе, ведь она устроена по-другому – снабжена дополнительным кабелем для передачи звука с микрофона.
Заметили, что на схемах за массу и микрофон отвечают разные контакты? Ничего странного. Предусмотрена пара типов (спецификаций) TRRS с различным расположением массы и микрофонного контакта. В CTIA (компьютерный стандарт) второе кольцо (третий контакт) подключено к общему контакту, а гильза – к микрофону, в случае с OMTP (телефонная спецификация) наоборот: 3-й контакт – спикер, 4-й – масса.
Стандарты актуальны только для гарнитуры – наушники с микрофоном, к устройствам без него отношения не имеют.
Стандарты актуальны только для гарнитуры – наушники с микрофоном, к устройствам без него отношения не имеют.
Рисунок №1
Заметили, что часть гарнитур с iPhone работает адекватно. Отказывает микрофон, не функционирует регулятор громкости и переключение треков из-за того, что большинство аксессуаров выпускается с международной распиновкой OMPT, а Apple использует американскую схему – CTIA. Проблема решается приобретением переходника CTIA – OMPT (см. рисунок №1) или перепайкой 3-го и 4-го контактов (их меняют местами) в гарнитуре.
Распиновка наушников позволит правильно припаять выводы в процессе ремонта устройства, например, замены повреждённого штекера или кабеля. Она зависит от количества контактов и применяемой спецификации: CTIA или OMPT.
Переходник 9 на 15 контактов
Назначение вывода 9ти контактного разъема | № | № | Назначение вывода 15ти контактного разъема |
Красный | 1 | 1 | Красный |
Зеленый | 2 | 2 | Зеленый |
Синий | 3 | 3 | Синий |
Синхронизация по горизонтали | 4 | 13 | Синхронизация по горизонтали |
Синхронизация по вертикали | 5 | 14 | Синхронизация по вертикали |
Красный (корпус) | 6 | 6 | Контрольный красный |
Зеленый (корпус) | 7 | 7 | Контрольный зеленый |
Синий (корпус) | 8 | 8 | Контрольный синий |
Синхросигнал (корпус) | 9 | 10 | Корпус (цифровой) |
5 | Корпус |
Зарубежная распиновка проводов по цветам
Основные цвета для маркировки за рубежом следующие:
- нейтраль — белый, серый или черный;
- защитное заземление — желтый или зеленый.
- Стандарты ряда стран допускают использовать в качестве защитного заземления оголенный металл без изоляции.
Провода заземления коммутируются на сборных неизолированных клеммах и соединяют между собой все металлические части конструкции, у которых отсутствует надежный электрический контакт между собой. При сборке электрощита
Назначение выводов игрового порта
№ | Сигнал |
1 | +5В |
2 | Кнопка 4 |
3 | Позиция 0 |
4 | Корпус |
5 | Корпус |
6 | Позиция 1 |
7 | Кнопка 5 |
8 | +5В |
9 | +5В |
10 | Кнопка 6 |
11 | Позиция 2 |
12 | Корпус |
13 | Позиция 3 |
14 | Кнопка 7 |
15 | +5В |
Классификация проводов по буквенному обозначению
Распиновка проводов может быть не толко по цветовому, но и по буквенному признаку. Частично символы для обозначения стандартизированы:
L (от слова Line) — фазный провод; N (от слова Neutral) — нулевой провод; PE (от сочетания Protective Earthing) — заземление; «+» — положительный полюс; «-» — отрицательный полюс; М — средняя точка в цепях постоянного тока с двуполярным питанием. Клеммы подключения защитного заземления обозначаются специальным символом, который нанесен на клемму штамповкой или на корпус прибора в виде наклейки. Символ заземления — единый для большинства стран мира, согласитесь, что это удобно и безопасно.
Замена электросчетчиков: за чей счет меняют счетчик электроэнергии и в каком случае
Многофазные сети
В многофазных сетях символы дополняются порядковым номером фазы:
L1 — первая фаза; L2 — вторая фаза; L3 — третья фаза. Встречается маркировка по старым стандартам, когда фазы обозначаются символами А, В и С.
Комбинированная система обозначения фаз
Отступлением от стандартов является комбинированная система обозначения фаз:
La — первая фаза; Lb — вторая фаза; Lc — третья фаза.
Обозначение фаз
Обозначение фаз советских времен
На просторах постсоветского пространства еще можно встретить обозначение фаз советских времен, где буквы изображены латиницей А, В, и С. Так же отход от общепринятых международных стандартов наблюдается в совмещённой буквенной маркировке: LA, LB, LC.
Как правильно сообщать данные за электроэнергию: как передавать, когда и каким способом
Слоты расширения материнской платы
(не совсем про кабели, но пригодится)
8ми битный слот
Сторона монтажа | Сторона пайки | ||||
№ | Сигнал | Значение | № | Сигнал | Значение |
A1 | I/O CH CK | Контроль канала ввода-вывода | B1 | GND | Земля |
A2 | D7 | Линия данных 8 | B2 | RES DRV | Сигнал Reset |
A3 | D6 | Линия данных 7 | B3 | +5V | +5В |
A4 | D5 | Линия данных 6 | B4 | IRQ2 | Запрос прерывания 2 |
A5 | D4 | Линия данных 5 | B5 | -5V | -5В |
A6 | D3 | Линия данных 4 | B6 | DRQ2 | Запрос DMA 2 |
A7 | D2 | Линия данных 3 | B7 | -12V | -12В |
A8 | D1 | Линия данных 2 | B8 | RES | Зарезервировано |
A9 | D0 | Линия данных 1 | B9 | +12V | +12В |
A10 | I/O CN RDY | Контроль готовности канала ввода-вывода | B10 | GND | Земля |
A11 | AEN | Adress Enable, контроль за шиной при CPU и DMA-контроллере | B11 | MEMW | Данные записываются в память |
A12 | A19 | Адресная линия 20 | B12 | MEMR | Данные считываются из памяти |
A13 | A18 | Адресная линия 19 | B13 | IOW | Данные записываются в I/O порт |
A14 | A17 | Адресная линия 18 | B14 | IOR | Данные читаются из I/O порта |
A15 | A16 | Адресная линия 17 | B15 | DACK3 | DMA-Acknowledge (подтверждение) 3 |
A16 | A15 | Адресная линия 16 | B16 | DRQ3 | Запрос DMA 3 |
A17 | A14 | Адресная линия 15 | B17 | DACK1 | DMA-Acknowledge (подтверждение) 1 |
A18 | A13 | Адресная линия 14 | B18 | IRQ1 | Запрос прерывания 1 |
A19 | A12 | Адресная линия 13 | B19 | REFRESH | Регенерация памяти |
A20 | A11 | Адресная линия 12 | B20 | CLC | Системный такт 4,77 МГц |
A21 | A10 | Адресная линия 11 | B21 | IRQ7 | Запрос прерывания 7 |
A22 | A9 | Адресная линия 10 | B22 | IRQ6 | Запрос прерывания 6 |
A23 | A8 | Адресная линия 9 | B23 | IRQ5 | Запрос прерывания 5 |
A24 | A7 | Адресная линия 8 | B24 | IRQ4 | Запрос прерывания 4 |
A25 | A6 | Адресная линия 7 | B25 | IRQ3 | Запрос прерывания 3 |
A26 | A5 | Адресная линия 6 | B26 | DACK2 | DMA-Acknowledge (подтверждение) 2 |
A27 | A4 | Адресная линия 5 | B27 | T/C | Terminal Count, сигнализирует конец DMA-трансформации |
A28 | A3 | Адресная линия 4 | B28 | ALE | Adress Latch Enabled, расстыковка адрес/данные |
A29 | A2 | Адресная линия 3 | B29 | +5V | +5В |
A30 | A1 | Адресная линия 2 | B30 | OSC | Частота тактового генератора 14,31818 МГц |
A31 | A0 | Адресная линия 1 | B31 | GND | Земля |
16ти битный слот
Сторона монтажа | Сторона пайки | ||||
№ | Сигнал | Значение | № | Сигнал | Значение |
A1 | I/O CH CK | Контроль канала ввода-вывода | B1 | GND | Земля |
A2 | D7 | Линия данных 8 | B2 | RES DRV | Сигнал Reset |
A3 | D6 | Линия данных 7 | B3 | +5V | +5В |
A4 | D5 | Линия данных 6 | B4 | IRQ9 | Каскадирование второго контроллера прерываний |
A5 | D4 | Линия данных 5 | B5 | -5V | -5В |
A6 | D3 | Линия данных 4 | B6 | DRQ2 | Запрос DMA 2 |
A7 | D2 | Линия данных 3 | B7 | -12V | -12В |
A8 | D1 | Линия данных 2 | B8 | RES | Коммуникация с памятью без времени ожидания |
A9 | D0 | Линия данных 1 | B9 | +12V | +12В |
A10 | I/O CN RDY | Контроль готовности канала ввода-вывода | B10 | GND | Земля |
A11 | AEN | Adress Enable, контроль за шиной при CPU и DMA-контроллере | B11 | SMEMW | Данные записываются в память (до 1М байта) |
A12 | A19 | Адресная линия 20 | B12 | SMEMR | Данные считываются из памяти (до 1 Мбайта) |
A13 | A18 | Адресная линия 19 | B13 | IOW | Данные записываются в I/O порт |
A14 | A17 | Адресная линия 18 | B14 | IOR | Данные читаются из I/O порта |
A15 | A16 | Адресная линия 17 | B15 | DACK3 | DMA-Acknowledge (подтверждение) 3 |
A16 | A15 | Адресная линия 16 | B16 | DR Q3 | Запрос DMA 3 |
A17 | A14 | Адресная линия 15 | B17 | DACK1 | DMA-Acknowledge (подтверждение) 1 |
A18 | A13 | Адресная линия 14 | B18 | IRQ1 | Запрос IRQ 1 |
A19 | A12 | Адресная линия 13 | B19 | REFRESH | Регенерация памяти |
A20 | A11 | Адресная линия 12 | B20 | CLC | Системный такт 4,77 МГц |
A21 | A10 | Адресная линия 11 | B21 | IRQ7 | Запрос IRQ 7 |
A22 | A9 | Адресная линия 10 | B22 | IRQ6 | Запрос IRQ 6 |
A23 | A8 | Адресная линия 9 | B23 | IRQ5 | Запрос IRQ 5 |
A24 | A7 | Адресная линия 8 | B24 | IRQ4 | Запрос IRQ 4 |
A25 | A6 | Адресная линия 7 | B25 | IRQ3 | Запрос IRQ 3 |
A26 | A5 | Адресная линия 6 | B26 | DACK2 | DMA-Acknowledge (подтверждение) 2 |
A27 | A4 | Адресная линия 5 | B27 | T/C | Terminal Count, сигнализирует конец DMA-трансформации |
A28 | A3 | Адресная линия 4 | B28 | ALE | Adress Latch Enabled, расстыковка адрес/данные |
A29 | A2 | Адресная линия 3 | B29 | +5V | +5В |
A30 | A1 | Адресная линия 2 | B30 | OSC | Такт осциллятора 14,31818 МГц |
A31 | A0 | Адресная линия 1 | B31 | GND | Земля |
C1 | SBHE | System Bus High Enabled, сигнал для 16-разрядных данных | D1 | MEM CS 16 | Memory Chip Select (выбор) |
C2 | LA23 | Адресная линия 24 | D2 | I/O CS 16 | I/O карта с 8 бит/16 бит переносом |
C3 | LA22 | Адресная линия 23 | D3 | IRQ10 | Запрос прерывания 10 |
C4 | LA21 | Адресная линия 22 | D4 | IRQ11 | Запрос прерывания 11 |
C5 | LA20 | Адресная линия 21 | D5 | IRQ12 | Запрос прерывания 12 |
C6 | LA19 | Адресная линия 20 | D6 | IRQ15 | Запрос прерывания 15 |
C7 | LA18 | Адресная линия 19 | D7 | IRQ14 | Запрос прерывания 14 |
C8 | LA17 | Адресная линия 18 | D8 | DACK0 | DMA-Acknowledge (подтверждение) 0 |
C9 | MEMR | Чтение данных из памяти | D9 | DRQ0 | Запрос DMA 0 |
C10 | MEMW | Запись данных в память | D10 | DACK5 | DMA-Acknowledge (подтверждение) 5 |
C11 | SD8 | Линия данных 9 | D11 | DRQ5 | Запрос DMA 5 |
C12 | SD9 | Линия данных 10 | D12 | DACK6 | DMA-Acknowledge (подтверждение) 6 |
C13 | SD10 | Линия данных 11 | D13 | DRQ6 | Запрос DMA 6 |
C14 | SD11 | Линия данных 12 | D14 | DACK7 | DMA-Acknowledge (подтверждение) 7 |
C15 | SD12 | Линия данных 13 | D15 | DRQ7 | Запрос DMA 7 |
C16 | SD13 | Линия данных 14 | D16 | +5V | +5В |
C17 | SD14 | Линия данных 15 | D17 | MASTER | Сигнал Busmaster |
C18 | SD15 | Линия данных 16 | D18 | GND | Земля |
Другие пины
- Пин 3.3V может быть использован для питания маломощных датчиков и модулей: максимальный ток, который можно снять с пина 3.3V составляет 150 мА, что с головой хватает для любых датчиков и модулей, кроме пожалуй радиомодулей nrf25L01.
- Пины GND – земля питания, все GND связаны между собой
- Пин 5V – питание от источника с напряжением до 5.5V (подробнее о питании смотри в следующем уроке)
- Пин Vin – питание от источника с напряжением 7-15V (подробнее о питании смотри в следующем уроке)
- RST – перезагрузка МК. Также этот пин выведен на кнопку
Маркировка и виды разъёмов
На ваш немой вопрос о том, какие бывают разъемы в автомагнитолах должен ответить, что большая часть современных автомагнитол оборудуются двумя стандартными разъёмами обозначающимися аббревиатурой «ISO». Каждый из этих разъёмов выполнен как восьмиконтактный прямоугольный штекер, иногда же их объединяют в один корпус (смотри фото).
Распиновка разъема iso автомагнитолы
Один из разъёмов несет в себе «силовые» цепи, то есть к нему подключаются источники потребления тока, и обозначается на схемах как разъём под литерой «А» и окрашен в коричневый цвет. Второй же разъём предназначается для подключения акустической системы автомобиля, иначе говоря, динамиков. В отличие от предыдущего его выполняют в чёрном цвете и обозначают на схемах принципиальных электрических как разъём «В».
Какие разъемы бывают у автомагнитол
Иногда встречаются автомагнитолы с тремя разъёмами, но это скорее исключение, чем правило. Точно такое же исключение, как и нестандартные разъёмы, которые все-таки имеют проводку со стандартной маркировкой и в любом случае позволяют соединить провода штатной акустической системы с нестандартными «конектами» как минимум двумя способами. Итак:
- «Сколхозить», а именно обрезать нестандартный штекер и внахлёст примотать провода, что «есть не совсем хорошо», так как со временем скрутка от окисления/тряски разболтается и в лучшем случае придётся проделывать всю работу заново с одновременной заменой предохранителей.
Распиновка iso разъемов автомагнитол
- Приобрести переходник (цена которого ни в коем разе рядом не стояла с тем объёмом работ, который включает в себя вышеописанный способ) и без каких-либо проблем, чинно/благородно, соединить автомагнитолу с другими элементами акустической схемы вашего автомобиля.
Выбор переходников на данный момент огромен, и каких-либо неприятностей в применении этого разнообразия возникнуть просто физически не может.
Распиновка iso разъема автомагнитолы