Нужен ли конденсатор для рупора если магнитола процессорная

Установка рупора в машину в ряде случаев является единственным способом улучшить качество звучания акустической системы в автомобиле. Устройства обеспечивают гармоничность и естественность звучания. Чтобы существенно улучшить звук и сделать комфортным прослушивание музыки во время езды, необходимо правильно выбрать не только рупорный динамик, но и подключить его к магнитоле в машине.

Что такое твитеры и зачем они нужны

Твиттер акустика для достижения наилучшего эффекта устанавливается вместе с сабвуфером, т.е. усилителем, воспроизводящим низкие частоты. Такие динамики нецелесообразно использовать отдельно от других. Они являются частью системы акустики. Таким образом, рупоры нужны не как главный источник звука, а как вспомогательные элементы, необходимые для улучшения качества воспроизведения.

О конденсаторах vol.3

Не хочешь смотреть рекламу? Зарегистрируйся!

Несколько слов о базовых параметрах конденсатора, определяющих его влияние на сигнал. Читай —
НА ТВОЙ САУНД!
Обстоятельно изучив предыдущую статью, нашел что ни одного слова не сказано об устройстве и параметрах конденсатора. А ведь многие из нас или уже забыли школьный курс физики, или прогуляли или вовсе столь любознательны, что он у них еще не начался по школьной программе (( а может и не начнётся — не знаю что теперь там происходит, в этой школе).

К делу! И так, дорогой читатель для начала предлагаю найти конденсатор. Нашел? Теперь расковыряй его, дружок. Что ты видишь?

Вариантов не так много: 1) Керамический конденсатор — ты увидишь 2 металлические пластины с малюсенькой прослойкой этой самой керамики (т.е. практически глины, специального состава). Сверху он был покрыт защитным слоем. Керамические конденсаторы не дороги и практичны. Звук? А это как с фломастерами — каждый на вкус и цвет разный. (Читай предыдущую статью)

2) Плёночный конденсатор — тут твоему взору, скорее всего, предстанет фольга с прослойкой плёнки. Этот вид конденсаторов наиболее распространён в гитарах. Да и не только гитарах. Видов плёночных конденсаторов множество — разных составов и форм. Сверху они также покрыты защитным слоем. Этот вид конденсаторов дороже керамических. Насколько? Зависит от состава (т.е. материалов) и параметров конденсатора. Дороже может быть от 2 до 100 раз.

3)Бумажно-масляный конденсатор. Поздравляю, ты разобрал самый культовый из всех конденсаторов! :)) Эти конденсаторы представляют частный вид плёночных. Фольга в них используется в качестве обкладок, диэлектрик — бумага, пропитанная маслом. Имеют основной недостаток — старение. Т.к. масло испаряется и бумага (т.е. диэлектрик) меняет свои свойства. Эти конденсаторы применяют также при производстве ламповых усилителей (раньше — за неимением других, сейчас — в силу культовости, стараясь сделать под винтаж).

Возвратимся к плёночным конденсаторам в целом! — в них бумага, пропитанная маслом, заменена на плёнку из полимеров и различных других материалов. Они лишены недостатков бумажных, топовые модели применяются в производстве Hi-end аппаратуры.

Да! А еще ты скорее всего обратил внимание на надписи, которые были на конденсаторе. Например: .022 50V Таким образом производитель показывает параметры своих изделий. Первый — емкость. Второй — максимальное напряжение.

Емкость — параметр, влияющий на частоту среза. Чем больше емкость тем ниже частота среза. Т.е. грубо говоря — чем больше это значение, тем меньше высоких частот будет в сигнале на выходе (если тон включен).

Вот таблица емкостей конденсаторов и их обозначений:

Остались вопросы?

Почему на Fender, как правило 0,022 мкФ (микро Фарада)? Потому-что ВЧ у синглов больше, соответственно меньшей емкостью можно срезать эти ВЧ так, чтобы было заметно.

А почему на Gibson 0,047 мкФ (микро Фарада)? А потому-что резонанс и ВЧ составляющая меньше на хамбакерах. И не всегда, установив конденсатор в 0,022 мкФ вы сможете заметить, что ручка тона есть. А 0,047 мкФ — нормально, уже заметно срезает.

А можно ли поставить конденсатор еще большей емкости? Можно. Срез ВЧ будет еще больше.

А как же напряжение? Напряжение — для гитарного темброблока, особенно с пассивной электроникой, фактор второстепенный. Т.к. напряжения в этих цепях значительно меньше максимального значения. _____________________________________________________________

Для более дотошных хочу добавить еще несколько слов.

Теперь обратим свой взор на общее устройство: Любой конденсатор — это 2 металлические пластины, разделённые диэлектриком, который не проводит электрический ток. Принцип — с одной и с другой стороны диэлектрика, на пластинах скапливаются противоположные заряды, создавая разность потенциалов (т.е. количества носителей заряда) между обкладками. Свойство накапливать заряд называют — емкостью. Чем длиннее пластины и меньше расстояние — тем больше зарядов конденсатор может накопить, тем больше емкость (Вспоминаем !).

Далее: Материал — важный фактор. Т.к. заряды в конденсаторе между собой взаимодействуют посредством электрического поля, это электрическое поле между обкладками в свою очередь зависит от материала. От материалов и расстояния также зависит и максимальное напряжение, которое конденсатор может выдержать.

Третье — активное сопротивление конденсатора (т.е. зависящее от частоты сигнала):


Где C — это емкость в фарадах (да, нужно будет не забыть перевести), W — угловая частота. W=2пF п=3,14, F — это частота сигнала в герцах. Теперь, зная емкость конденсаторы, вы можете посчитать — какое сопротивление он оказывает для каждой конкретной частоты.

Теперь — всё! Спасибо за внимание!

Кирилл Труфанов Гитарная мастерская: Pretty Underground Технический инфо-портал: gitarnaya-furnitura.ru

P.S. Вот еще статьи на эту тему: О схеме темброблока и как конденсатор включён в неё: О видах и фирмах конденсаторов на брендовых инструментах:

Какие лучше выбрать

Существует ряд параметров, на которые следует обратить внимание при выборе прибора. К ним относятся:

Ты водитель автомобиля?! Тогда ты сможешь пройти этот простейший тест и узнать . Перейти к тесту »

  • наличие необходимых выходов;
  • мощность;
  • характер покрытия.

От типа материала, из которого изготовлен рупор, зависит качество звучания. Самыми лучшими считаются рупорные твитеры шелковые. Многие бренды используют шелк, т.к. он отличается мягкостью, поэтому звук не передается в полной мере. Кроме того, этот материал обладает высокой степенью вязкости, поэтому создается выраженное внутреннее трение.

При этом в большинстве моделях таких динамиков шелк обрабатывается специальными веществами, которые не только улучшают качество звука, но и повышают влагостойкость и пылестойкость прибора. Некоторые компании выпускают хорошие рупоры, изготовленные из искусственных материалов, которые звучат не хуже, чем приборы из натурального шелка.

Желательно, чтобы динамик был оснащен тыловыми и фронтальными каналами.

Обязательно должен присутствовать разъем для подключения сабвуфера. Мощность прибора должна быть не меньше 50W. Этого будет достаточно для обеспечения громкости. Лучше приобретать приборы высокой чувствительности.

Вся правда о конденсаторах: волшебные свойства загадочных баночек

Было ли лучшее время для энтузиастов и любителей Hi-Fi, чем конец 1970-х и начало 1980-х годов? С одной стороны, так много всего происходило с развитием цифрового аудио, а с другой — наблюдался рост субъективизма. Внезапно проигрыватели и усилители стали оценивать не по уровню детонации, выходной мощности и гармоническим искажениям, а по их звучанию! И можно было даже всерьёз говорить о звучании кабелей. В этой новой атмосфере всё, что когда-то считалось само собой разумеющимся в области Hi-Fi, стало кандидатом на переоценку.

Пристальному изучению подверглось и влияние на звук пассивных электронных компонентов — резисторов, индуктивностей и конденсаторов. В особенности, конденсаторов. Знающие люди начали обсуждать такие явления как эквивалентное последовательное сопротивление (ESR) и диэлектрическое поглощение.

Сегодня мы нечасто слышим об этой теме, но не потому, что проблема была исчерпана. Скорее всего, разработчики нынче уделяют столь же пристальное внимание используемым пассивным компонентам, как и схемам, в которых они применяются, так что общественный фурор несколько стих.

Азы

В простейшем виде конденсатор состоит из двух металлических пластин, разделённых воздухом (или, ещё лучше, вакуумом) и схематично изображён на рис. 1. Поскольку между пластинами нет проводящего пути, конденсатор блокирует постоянный ток (например, от батареи). При этом конденсатор, напротив, пропускает сигналы переменного тока — как раз такие как звуковые волны.


Рис. 1. Компоненты, из которых состоит конденсатор — две проводящие пластины, разделённые слоем диэлектрика.

Проверенное решение

Мы нечасто сталкиваемся с воздушными конденсаторами, но если вы заглядывали внутрь старого лампового радиоприемника и видели элемент, отвечающий за настройку, который состоит из чередующихся металлических пластин, это как раз воздушный конденсатор переменной ёмкости. В большинстве конденсаторов, с которыми мы сталкиваемся в аудиотехнике и прочей электронике, в качестве изолирующего материала (диэлектрика), разделяющего пластины, не используется воздух, поскольку он имеет низкую диэлектрическую постоянную (1,0), а это означает, что воздушные конденсаторы большой емкости слишком громоздкие, чтобы быть практичными. По этой причине используются, в основном, твёрдые диэлектрики, с более высокими диэлектрическими свойствами, в том числе из керамики и различных видов пластмасс (например, ПВХ с диэлектрической проницаемостью 4,0). Именно здесь история становится особенно интересной, поскольку для всех этих диэлектриков характерны те или иные компромиссы в плане влияния на звук, в то время как воздух практически идеален.

Простые фильтры

Для начала, узнаем побольше о том, как ведут себя конденсаторы и для чего они используются. Конденсаторы блокируют постоянный ток и пропускают переменный, однако они не пропускают переменный ток с разной частотой одинаково. Это объясняется тем, что конденсаторы обладают реактивным сопротивлением, которое снижается с увеличением частоты (к слову, катушки индуктивности тоже обладают реактивным сопротивлением, которое, наоборот, увеличивается с ростом частоты).

Таким образом, конденсаторы пропускают высокочастотные сигналы легче, чем низкочастотные, что делает их крайне полезными в частотно-селективных цепях (то есть, в фильтрах), а также для устранения нежелательных сигналов (например, гул или шум с шины питания постоянного напряжения).

Простые фильтры верхних и нижних частот показаны на рис.2. В фильтре верхних частот (рис. 2а) последовательно включенный конденсатор подключен к шунтирующему резистору. В фильтре нижних частот (рис. 2b) конденсатор и резистор меняются местами.


Рис. 2. RC-фильтр первого порядка верхних (2a) и нижних (2b) частот.

Итак, конденсаторы зачастую используются для объединения цепей, отделения нежелательного шума в цепях постоянного напряжения и в частотно-селективных цепях (фильтрах). Поскольку конденсаторы накапливают электрический заряд, большие из них также применяются в качестве резервуаров в источниках питания переменного и постоянного тока. На рис. 3 показан типовой источник питания, включающий в себя понижающий трансформатор (он понижает напряжение сети), мостовой выпрямитель (который преобразует переменный ток из трансформатора в импульсный постоянный ток) и пару конденсаторов-резервуаров (сглаживающих пульсации после выпрямления переменного тока).


Рис.3. Принципиальная схема двухполупериодного источника питания, состоящего из понижающего трансформатора, двухполупериодного мостового выпрямителя и двух резервуарных конденсаторов.

Подобные схемы встречаются во многих твердотельных аудиокомпонентах. Аналогичные решения используются и в ламповом оборудовании, но из-за высоких напряжений, требуемых для работы ламп, трансформатор здесь обычно повышает напряжение сети.

Ёмкость резервуарных конденсаторов, используемых в транзисторных усилителях мощности, может достигать 50 000 мкФ и более, тогда как в других случаях в схеме могут использоваться конденсаторы емкостью 1 НФ (одна тысячная микрофарада) или даже меньше. Таким образом, очевидно, что некоторые типы конденсаторов лучше подходят под определённые задачи, чем другие.

Важное уточнение

Как правило, самые большие резервуарные конденсаторы являются электролитическими, ведь они обеспечивают высокую ёмкость в сравнительно небольшом объёме. Такие конденсаторы содержат электролит (жидкость или гель), который химически реагирует с металлической фольгой внутри банки, образуя слой диэлектрика. Подобные электролитические конденсаторы, а также некоторые другие — например, танталовые, называются полярными, а несоблюдение полярности подключения может привести к их выходу из строя.

Другая разновидность — неполярные конденсаторы, которые можно подключать без учёта полярности. Подобные электролиты иногда использовались в пассивных кроссоверах акустических систем, однако такая практика сегодня устарела, поскольку плёночные конденсаторы справляются с этой задачей лучше, хоть и занимают больше места.

Конденсаторы также могут иметь различное расположение выводов — аксиальное (осевое) или радиальное. Преимущество радиальных электролитов заключается в том, что они занимают меньше площади на плате, однако их минус — в том, что они увеличивают её высоту. В больших электролитических конденсаторах обычно отказываются от выводов под пайку — в пользу винтовых клемм.

Что скрывают конденсаторы

Настоящие конденсаторы, как и настоящие политики, ведут себя не идеально, и именно здесь кроется причина их влияния на качество звука. Во-первых, на практике ни один конденсатор не является только ёмкостью — он также имеет индуктивность и сопротивление. На принципиальной схеме конденсатор обычно обозначается одним из символов на рис. 4 (все они визуально отсылают к двум разделенным пластинам), однако в реальности он представляет собой что-то вроде схемы, представленной на рис. 5. Резистор обозначенный на рисунке как ESR (эквивалентное последовательное сопротивление) может быть не постоянным — сопротивление может зависеть от частоты. В случае с электролитическими конденсаторами, ESR обычно уменьшается с частотой.


Рис. 4. Варианты обозначения конденсаторов на схеме

Одним из последствий того, что у конденсаторов есть индуктивность (ESL или эквивалентная последовательная индуктивность на рис. 6), является то, что они, по сути, являются электрически резонансными. Если проанализировать импеданс конденсатора в зависимости от частоты, он не будет продолжать уменьшаться с ростом частоты. На рис. 6 показано, что импеданс достигает минимума (эквивалентного значению ESR) на резонансной частоте, а затем, по мере увеличения частоты, он снова начинает расти из-за ESL.


Рис. 5. Схематичный эквивалент реального конденсатора демонстрирует паразитное сопротивление (ESR) и индуктивность (ESL)


Рис. 6. Паразитная индуктивность приводит к тому, что у конденсаторы имеют электрический резонанс, иногда — в пределах слышимого диапазона частот.

У больших электролитических конденсаторов частоты электрического резонанса обычно находятся в пределах звукового диапазона. У небольших конденсаторов частоты электрического резонанса могут превышать 1 МГц. Для увеличения частоты электрического резонанса для заданной емкости следует уменьшить ESL — последовательную индуктивность.

Для достижения этой цели, при разработке электролитических конденсаторов, где такая проблема стоит наиболее остро, применяются различные методы. Например, в конденсаторах DNM T-Network для снижения индуктивности используются специальные Т-образные соединения из фольги — таким образом, их резонансная частота более чем в два раза выше по сравнению со стандартной конструкцией (от 28 кГц до 75 кГц — в примере, который приводит компания DNM на своём веб-сайте).

ESR оказывает потенциально благотворное влияние на демпфирование электрического резонанса конденсатора, однако, в отличие от индуктивности или ёмкости, сопротивление генерирует тепло в то время, когда через конденсатор проходит ток. В больших ёмкостных конденсаторах, где проходящие через них токи велики, этот эффект внутреннего нагрева ограничивает безопасные условия эксплуатации. Тем не менее, электролитические конденсаторы лучше всего работают именно тёплыми.

Микрофонный эффект

Не секрет, что ламповое оборудование чувствительно к вибрации. Внутри вакуумированной стеклянной оболочки лампы находятся тонкие металлические электроды, расстояние между которыми влияет на работу лампы. Таким образом, если встряхнуть лампу достаточно сильно, это отразится на её электрической мощности — эффект, который называют «микрофонным», поскольку лампа в таком случае ведёт себя подобно микрофону.

Твердотельная электроника меньше подвержена этому эффекту, однако приведём в пример некий крайний случай: разработчики первых систем управления двигателем в гоночных автомобилях вскоре научились не прикреплять электронные блоки к двигателю, либо использовать хорошую изоляцию, иначе вибрации от двигателя могли нарушить её работу. Уровни вибрации, которые испытывает Hi-Fi оборудование при повседневном использовании, гораздо ниже, однако некоторые производители, среди которых, например, Naim Audio, по-прежнему прилагают большие усилия, чтобы свести к минимуму вероятное воздействие микрофонного эффекта.

Способность конденсатора накапливать заряд (его ёмкость) пропорциональна площади пластин и обратно пропорциональна расстоянию между ними, а «пластины» обычно представляют собой тонкую фольгу с тонкими слоями диэлектрика между ними. Это приводит к тому, что конденсаторы подвержены воздействию микрофонного эффекта, поскольку из-за вибрации расстояние между пластинами и, следовательно, значение ёмкости может меняться.

Таким образом, физические свойства материалов, из которых изготовлен конденсатор, могут быть столь же важны, как и электрические параметры. Но что ещё интереснее, вибрация извне не является необходимым условием для того, чтобы конденсаторы страдали от её воздействия, ведь силы, формируемые напряжениями и токами внутри самого конденсатора, также могут вызывать механические резонансы. Из-за этого эффекта можно даже услышать, как некоторые конденсаторы издают звук, когда через них проходит сигнал. В кроссовере акустической системы, где уровни вибраций, напряжения и токи высоки, присутствует «идеальный шторм» факторов, которые делают выбор подходящего конденсатора особенно важной задачей.

Ключевые слова

Проблема микрофонного эффекта и механических резонансов конденсаторов активно обсуждалась на протяжении многих лет, однако исследований по этому вопросу было достаточно мало. Во всяком случае, мало опубликованных исследований. Но те, что существуют, подтверждают мнение, что данный эффект может оказывать заметное влияние качества звучания.

К тому же, в некоторых случаях конденсаторы могут приводить к необычайно высоким уровням гармонических и интермодуляционных искажений. Понимание того, как и почему это происходит, позволяет разработчикам сосредоточить свои усилия на доработке электронной схемы и тщательном выборе электронных компонентов — таким образом, чтобы это принесло наибольшую пользу.

Как и где установить

Согласно рекомендациям производителей лучше установить твитеры максимально близко к голове слушателя. Это обеспечивает качественное звучание. Однако не всегда удается смонтировать данный прибор на нужный уровень. Чаще, проводя монтаж прибора в авто своими руками, приходится выбирать место исходя из имеющихся особенностей машины и уже установленного оборудования.

Крайне важно, чтобы динамик в дальнейшем не оказывал влияния на удобство использования автомобиля. Кроме того, необходимо подбирать место так, чтобы рупор оставался недалеко от магнитолы. Это облегчит его подключение.

Часто выполняется установка твитера в области уголков зеркал. В этом случае динамики хорошо вписываются в имеющийся интерьер автомобильного салона и при этом не доставляют дискомфорта во время вождения. Кроме того, возможна локализация на передней панели и на лобовом стекле.

Помимо всего прочего, существуют специальные подставки, которые облегчают монтаж. Подиумы под твитеры лучше приобретать вместе с этим акустическим прибором, чтобы не ошибиться с размером. При необходимости их можно сделать самостоятельно.

В каких местах рекомендовано устанавливать высокочастотные динамики?

Производители рекомендуют много мест, в которых можно разместить высокочастотные динамики, чаще всего на уровне ушей. Другими словами, направить их как можно выше на слушателя. Но не все согласны с подобным мнением. Такая установка не всегда удобна. Она зависит от конкретных обстоятельств. И количество вариантов установки довольно-таки большое.

  • Уголки зеркал. В процессе поездки они не будет вызывать дополнительный дискомфорт. Притом красиво впишутся в интерьер транспортного средства;
  • Приборная панель. Монтаж можно выполнить даже с помощью двухстороннего скотча;
  • Подиумы. Здесь есть два варианта. Первый – поставить твитеры в штатный подиум (который идёт в комплекте с пищалкой), второй – изготовить подиум самостоятельно. Последний случай более сложен, но при этом гарантирует более качественный результат.

Как правильно подключить

Сначала подготавливается место, где будет проводиться установка рупоров. При необходимости фиксируется подиум для твитеров. Необходимо подготовить кабели и переходники. При проведении работ по установке рупоров соединение выполняется межблочными проводами, а затем требуется подведение кабелей для питания.

Подключение твитеров может проводиться через усилитель. Это устройство оснащено рядом разъемов. Подключение рупоров к нему выполняется так же, как и стандартных колонок. Каждый усилитель имеет свои особенности подключения к магнитоле, которые производитель указывает в технической документации.

Кроме того, можно подсоединить его напрямую к главному динамику или к магнитоле, но этот метод считается менее эффективным. Удобно при монтаже использовать кроссоверы для твитеров. Этот прибор оснащен рядом зажимов Он выступает связующим звеном между магнитолой источником питания и рупорами. В ряде случаев нет возможности обойтись без кроссоверов.

Всем привет! В этой записи, я решил поднять насущную и актуальную для многих новичков тему. Попробуем в ней разобраться, вникнуть в нее, сделать выводы и сформулировать советы. Поехали!

Речь идет о выборе конденсаторов для рупорных пищалок. Именно так ставят вопрос все новички. Мы с вами шаристые перцы и тертые калачи по этому перефразируем это грамотнее. Подбор пассивного фильтра высоких частот первого порядка для рупорных пищалок.

Сперва давайте вспомним, чо это за фигня, для чего нужна и как работает? Кроссоверы (фильтры) нам нужны для того, чтобы отрезать лишние диапазоны частот звука от динамика, отдав ему необходимую для его нормальной работы полосу. С сабами в этом плане страшного ничего нет. Даже если дать сабу всю полосу, то с ним ничего не случится. Зато когда мы говорим о пищалках любой конструкции, то для них кроссовер определит их жизнь, звук и долговечность.

Второй момент, который важно понимать: любой кроссовер НЕ ОБРЕЗАЕТ частоты резко. Если ваш фильтр высоких частот настроен, допустим, на 3килогерца это не значит, что динамик резко замолчит ниже трех. Динамик будет петь и 2 и 1кгц и 500гц и даже 20! Весь вопрос в том, какой мощности сигнал придет к динамику на этих частотах и насколько сильно и быстро будет падать уровень громкости за пределами настройки кроссовера. Этот момент определяется порядком среза кроссовера. 1й, порядок (6дб/окт), 2й (12дб/окт) и т.д. Что значат эти дБ/окт? Ну с Дб ваопросов не возникает. Дб-децибелы определяют уровень громкости (точнее уровень звукового давления, но пофиг суть не в этом) а окт. – это октава. Октава это…(бэллллин как бы попроще завернуть :D) Октава это диапазон частот располагающийся либо до вдвое большей частоты от текущей либо вдвое меньшей. Не понятно кароче один хрен. :D:D Объясню на примере: Допустим у нас есть фильтр высоких частот 1го порядка на 1килогерц(1000гц). Такой фильтр пропускает к пищалке высокие частоты и режет низы. Так вот фильтр первого порядка (6дб/окт) это значит, что ниже 1килогерца звук не пропадет, но громкость звука станет падать. Если допустим у нас динамик пел с громкостью 100децибелл на 1килогерце, то ниже настройки фильтра на одну октаву (1000гц/2=500гц) на 500герцах динамик будет петь на 6 децибел тише. А еще на октаву ниже (500/2=250гц) уже на 12 децибелл тише, на 125гц на 18 дб тише и на 63гц на 24 дб тише и так далее. Если бы мы резали динамик на той же частоте но 2м порядком (12дб/окт) то на 500гц мы бы потеряли 12дб, на 250гц 24 дб, на 125гц 36дб а на 63гц 48дб. Таким макаром можно просчитать любой порядок фильтра на разных частотах.

Пример, конечно, чрезвычайно упрощенный и грубый. Скорость и равномерность затухания будет зависеть еще от 100500 факторов, но в принципе пример нужную нам суть отражает. Именно потому, что пищалка всегда будет петь и ниже частоты среза, крайне не рекомендуется делать срез вблизи их резонансной частоты ниже которой им работать становится крайне трудно. Это в лучшем случае снизит ее громкость в разы (вы просто не сможете навалить громкость на всю без искажений). В худшем пищалка умрет. Усвоили этот факт и поехали дальше. Там еще все муторнее и непонятнее :D.

Следующий важный аспект этого дела напроч разровняли в умах новичков таблички вот такого рода в интернете:

Собственно таблички верные.были бы… если б не один нюанс. не бывает динамиков 4ом, или 2 ом, или 8 ом. И не было никогда. ))

То что указано на динамике это не его сопротивление, это импеданс во первых, во вторых это МИНИМАЛЬНЫЙ импеданс который может иметь динамик при работе. Этот критерий очень важен для стабильной работы усилителя без перегрузки. Но это вовсе не значит, что импеданс не может быть выше при работе динамика. Я больше скажу, он выше практически всегда, весь вопрос на сколько выше и когда. (кстати можете померять мультиметром ваши 4х омные динамики. Там всегда будет меньше чуть 4х Ом. 3.7-3.8ом именно потому что указан импеданс а вы измеряете сопротивление)) ). Так вот импеданс динамика при воспроизведении звука зависит от кучи факторов, начиная от конструкции самого дина и заканчивая оформлением динамиков ( а ведь рупорная пищалка это пищалка в офромлении РУПОР) и частоты. Вот последний фактор нам особенно интересен, когда мы говорим о вч. Если, допустим, взять две четырехомные пищалки и измерить их импеданс скажем на 5 килогерцах то запросто может получиться что у одной пищалки на этой частоте импеданс 5ом а у другой 7. Потом согласно таблице выше, пытаемся их порезать на 5 килогерц кондером на 8 микрофарад. В итоге у нас первая порежется на 4килогерца, а вторая с этим же кондером порежется уже на 3килогерцах! Соответственно первая просто будет валить говнозвук, вторая начнет подгорать. Для примера вот вам график зависимости импеданса системы от частоты (Z характеристика) для компонентной акустики:

И вот табличка экспериментальных замеров нашего одноклубника:

А ВОТ и сама тема с замерами.

Какой вывод можно из этого сделать? А вот такой: Если читать все таблички подряд и не пользоваться головой то говнозвук и паленое железо это ваше уверенное будущее.

Реально узнать частоту среза конденсатором и грамотно осуществить его подбор можно только имея на руках график зависимости импеданса от частоты для ваших динамиков либо сделать его самому в ваших условиях методом измерения.

Другой вопрос, что никому это нафиг не надо и всем гораздо проще не думая вкрячить кондер чтоб долбило по громче. Подавляющее большинство сторонники именно такого подхода, по этому давайте разберемся как в этом случае не накосячить и не запороть все.

Во первых нам нужны НЕПОЛЯРНЫЕ конденсаторы. Обычно они имеют вот такой вид или похожий:

Вот такие электролитические кондеры использовать крайне не рекомендуется.

Их отличие от первых в том, что они имеют полярность и работают адекватно в постоянном токе. Те что выше работают одинаково хорошо как в переменном так и в постоянном ( а мы имеем дело именно с переменным)) ). Китайцы очень любят ставить электролиты в дешевых системах отрезая ими пищалку. Отсюда вам бесплатный совет: просто заменив в своей дешевой акустике электролит на неполярный конденсатор той же емкости, вы можете сделать звук приятнее и инетреснее )).

Начинать подбор нужно ОТ МЕНЬШЕГО НОМИНАЛА КОНДЕСАТОРОВ К БОЛЬШЕМУ. Чем больше емкость конденсатора тем ниже он порежет вашу пищалку.

Номинал емкости конденсатора указан всегда на его корпусе, но иногда это сделано мудреным алгоритмом. Описывать я его не буду, он вам нафиг не нужен. Просто порекомендую попросить продавца в магазине разложить кондеры по разным кулечкам и подписать каждый.

Касаемо допустимого напряжения работы конденсаторов, то тут можно не париться. У неполярных кондеров напряжение допустимое измеряется порядкоми сотен вольт, и в вашей пищалке он будет работать с конским запасом по напряжению. )

Вот собственно и все что я хотел рассказать о конденсаторах для пищалок. Остается упомянуть, что конденсатор необходимо устанавливать как можно ближе к пищалке. В идеале прям к кдемме подпаивать. При этом абсолютно не важно на какой из клемм будет висеть кондер. Хотя если начали вешать кондер на плюсовую клемму то вешайте на плюсовые и на всех остальных пищах.

Какой конденсатор ставить на ВЧ динамик

Для получения качественного звучания акустических систем, нужно очень тщательно подходить к выбору конденсатора. Какой конденсатор нужен для динамика ВЧ. Китайские производители недорогих колонок ставят последовательно с катушкой высокочастотного динамика электролит ёмкостью 2-10 мкф.

Изделия такого типа являются полярными и по определению предназначены для работы в цепях постоянного тока. На переменном токе они ведут себя не совсем корректно, поэтому для подключения высокочастотного динамика в акустической системе из двух или трёх громкоговорителей нужно использовать плёночные изделия соответствующей ёмкости. Если имеется недорогая акустическая система китайского производства, то достаточно вскрыть её, и заменить электролит, на полипропиленовый или бумажный конденсатор, чтобы почувствовать разницу.

Если необходимой ёмкости нет, то нужные конденсаторы для ВЧ динамиков собираются из нескольких изделий, соединённых параллельно.Из отечественной продукции можно использовать К73-17 и К78-34. Это лавсановые и полипропиленовые изделия. Тип К78-34 специально разработан для установки в фильтры высококачественных акустических систем. Он корректно работает на частотах до 22 кГц при выходной мощности колонок до 220 ватт с динамиками 4 Ом.

Чтобы правильно подобрать конденсатор для ВЧ динамика 4 Ом нужно знать его резонансную частоту. Высокочастотные головки могут иметь сравнительно низкую резонансную частоту порядка 800-1 200 Гц, но у большинства «пищалок» резонанс будет на 2 000-3 000 Гц. Величины конденсаторов для разных уровней среза к динамику 4 Ом выглядят следующим образом:

  • 5 000 Гц – 8,0 мкф
  • 6000 Гц – 6,5 мкф
  • 8000 Гц – 5,0 мкф
  • 9000 Гц – 4,4 мкф

Обрезать полосу, с помощью фильтра первого порядка, нужно выше резонанса, в противном случае колонка будет неприятно вибрировать при воспроизведении звука. Рекомендуется, чтобы частота среза фильтра примерно в два раза превосходила величину резонанса высокочастотного громкоговорителя.

Какие лучше выбрать

Шелковые твитеры, как считалось ранее, обеспечивали наиболее лучший результат звучания. Но производимая продукция ряда брендов на практике доказала, что качества можно добиться и без применения шелка. В первую очередь играет роль чувствительность сабвуфера, дающее хорошее качество звука.

Как подключить

Пищалка воспроизводит звук от 3000 до 20 000 герц частотой и один из главных элементов стереосистемы. Магнитола имеет больший спектр частот от 5 до 25 000 герц. Пищалка при подаче низкочастотного сигнала, на которое она не рассчитана, может перестать функционировать корректно или сломаться окончательно.

Для повышения долговечности и надежности работы пищалки убирают низкочастотные звуки и модифицируют таким образом, чтобы на нее доставлялся только нужный диапазон звуковых частот.

Исключения составляют те случаи, когда автовладелец купил бывшую в использовании магнитолу без конденсатора. Выглядит конденсатор как небольшая коробочка, на которую идет подача сигнала, либо он смонтирован на проводе или встроен в сам твитер. Диапазон частот зависит от вида конденсатора и при покупке необходимо удостовериться, что приобретаете нужный.

Система высококачественного воспроизведения звуков, позволяющая создать эффект присутствия – рупорная акустика. Устанавливаются такие системы и в виде домашней акустики, и в авто, позволяя в ограниченном пространстве создать атмосферу большого концертного зала и передать эмоции исполнителя слушателям. Как правильно подключить рупора в автомобиль?

Рупорная акустика

Керамические конденсаторы

Типы и свойства керамик

Данный тип конденсаторов относится к конденсаторам с неорганическим диэлектриком. Керамические конденсаторы — это самый массовый вид конденсаторов, что обусловлено их высокими и стабильными характеристиками, простотой производства, пригодностью для автоматизированного монтажа [1]. Керамические конденсаторы получили свое название потому, что в качестве диэлектрика в них применяется радиочастотная керамика на основе титана, циркония и оксидов других материалов. Чаще всего радиочастотная керамика производится из диоксида титана (TiO2), титаната бария (BaTiO3) или титаната стронция (SrTiO3), хотя точные формулы керамики у разных производителей различаются.

Теперь необходимо сказать несколько слов о классификации керамических конденсаторов. Достаточно часто «сверхцелью» обзорной статьи по электронным компонентам становится попытка дать разработчику универсальный инструмент по выбору компонентов для использования в конкретном применении, основанный на классификации по различным параметрам. Применительно к керамическим конденсаторам попытки создать классификацию «в помощь разработчику» надо признать скорее неудачными. У этого есть не одна причина, и в «сухом остатке» правильнее будет признать, что самый надежный способ выбора керамических конденсаторов для конкретного применения — читать даташит.

Достаточно упомянуть, что свои версии классификации предложены двумя инженерными сообществами: IEC (International Electrotechnical Commissiom) и EIA (Electronic Industries Alliance). Классификации имеют различия. Так, EIA разделяет керамику на четыре класса, а IEC — на три. Тот факт, что значительная часть производителей (в основном американских) использует в маркировке своих изделий классификацию EIA, а другая — IEC, лишь усложняет задачу по выбору компонентов. Сюда нужно добавить, что кодировку IEC также называют Industrial, хотя по смыслу обе кодировки работают в индустриальном диапазоне температур. Имеется и отдельная Military-кодировка. В этом разделе статьи будут упоминаться в основном кодировки EIA и Industrial.

Были попытки классификации, основанные на разделении конденсаторов по применению, в которых, тем не менее, можно увидеть, что разделение по применению преимущественно связано с частотой. Та же EIA предлагает делить керамические конденсаторы на два больших класса. Можно достаточно условно выделить более высокочастотные применения (резонансные контуры и т. п. аппаратуры), где немалое значение имеют малые потери и высокая стабильность емкости, и менее высокочастотные применения (цепи фильтрации и прочее), где эти параметры не столь значимы ([1], EIA).

Керамические конденсаторы относятся к конденсаторам с нормируемым значением ТКЕ. Как уже упоминалось, Ассоциация производителей электронного оборудования (EIA) разделяет керамику на четыре класса и типы внутри каждого класса. Чем меньше номер класса, тем выше общие характеристики конденсатора, но больше размер для данной емкости. Типы в пределах каждого класса определяют рекомендуемый диапазон рабочих температур и ТКЕ, включая температурный дрейф и допуск в указанном температурном дрейфе. EIA определяет основные параметры конденсаторов для каждого класса и методы их измерения. Это касается сопротивления изоляции, тангенса угла диэлектрических потерь, диэлектрической абсорбции и других основных параметров конденсаторов.

Разделение керамических конденсаторов на классы в достаточной степени условное, поскольку не указано жестких требований на каждый класс. Например, конденсаторами 1‑го класса принято считать «точные конденсаторы с температурной компенсацией, с высокой стабильностью по напряжению, температуре и частоте». Конденсаторы 1‑го класса характеризуются температурным коэффициентом не хуже ±3% на градус при +25…+85 °C. Для конденсаторов 1‑го класса может быть достигнута точность в 1%, хотя наиболее типичной считается точность 5–10%. Температурная зависимость емкости для конденсаторов 1‑го класса считается линейной. Разделение керамических конденсаторов на классы производится по типу керамики, которая использована при их изготовлении. Для обозначения типов керамики EIA ввела набор кодов. Коды керамических конденсаторов 1‑ и 2‑го классов различаются. Кроме того, существует два варианта обозначения типа керамики — в соответствии со стандартом EIA-RS‑198 и упомянутым выше промышленным стандартом Industrial. В таблице 1 представлена расшифровка кодировки EIA для керамики 1‑го класса.
Таблица 1.Кодировка EIA-RS‑198 керамики по наклону температурной кривой (класс 1)

Температурный коэффициент (наклон температурной кривой) Множитель температурного коэффициента Допустимое отклонение температурного коэффициента, +25… +85 °C
Буква Ppm/°С Цифра Множитель Буква Ppm/°С
C 0 0 –1 G ±30
B 0,3 1 –10 H ±60
L 0,8 2 –100 J ±120
A 0,9 3 –1000 K ±250
M 1 4 +1 L ±500
P 1,5 6 +10 M ±1000
R 2,2 7 +100 N ±2500
S 3,3 8 +1000
T 4,7
V 5,6
U 7,5

Например, наиболее часто в конденсаторах 1‑го класса применяется керамика C0G. Это означает, что в температурном диапазоне +25…+85 °C наклон температурной кривой будет нулевым (0), то есть зависимости емкости от температуры не будет. Это можно увидеть на рис. 1, 2, где конденсаторы C0G обозначены как NP0 (обозначение, используемое в стандарте Industrial). Множитель температурного коэффициента вместе с самим коэффициентом также определяет наклон температурной кривой и соответственно степень изменения емкости от вариации температуры. В нашем примере (C0G) коэффициент 1 не изменит наклон температурной кривой, заданный основным температурным коэффициентом (0), который в англоязычной литературе часто называется Significant Figures. Знак перед множителем температурного коэффициента определяет направление изменения емкости: знак «–» говорит о том, что с повышением температуры емкость будет уменьшаться. Действие знака при множителе температурного коэффициента наглядно демонстрируется на рис. 1. К рисунку необходимо сделать пояснение. Промышленное обозначение керамики, основанное на Negativ/Positiv-обозначениях, считается более устаревшим по отношению к обозначениям EIA, но при этом более интуитивно понятным и состоит из буквы (N — для обозначения отрицательного температурного коэффициента, P — для обозначения положительного температурного коэффициента) и числа, указывающего температурную погрешность. Сравнение кодировки по EIA и промышленной кодировки видно из таблицы 2.
Таблица 2.Сравнительная кодировка EIA и Industrial

Industry P100 NP0 N030 N075 N150 N220 N330 N470 N750 N1500 N2200
EIA M7G C0G B2G U1G P2G R2G S2H T2H U2J P3K

Теперь, собственно, рис. 1, о котором упоминалось выше. На нем представлено изменение емкости от температуры для керамики 1‑го класса. Различные керамические материалы на этом рисунке имеют кодировку Industrial (выделено цветом), и по таблице 2 можно найти соответствие им в кодировке EIA (черные обозначения в рамках). При сравнении таблиц 1 и 2 видно действие знака множителя температурного коэффициента, проиллюстрированное на рис. 1.

Рис. 1. Идеализированные кривые зависимости емкости от температуры керамики 1 го класса

Основное отличие керамики 2‑го класса от 1‑го — нелинейная зависимость емкости от температуры. Это хорошо видно на рис. 2, где сравнивается керамика 1‑го класса C0G (NP0) с двумя образцами 2‑го класса (X7R, Y5V). В общем и целом конденсаторы 2‑го класса обладают большей объемной эффективностью, что связано с высокой диэлектрической проницаемостью керамики 2‑го класса и напрямую отражается на размерах конденсаторов.

Рис. 2. Сравнение температурных характеристик керамики 1 го и 2 го классов

Температурная кодировка EIA конденсаторов 2‑го класса приведена в таблице 3.
Таблица 3.Кодировка EIA-RS‑198 керамики без температурной компенсации (класс 2 и выше)

Наименьшая рабочая температура Наибольшая рабочая температура Изменение емкости
Буква Температура, °С Цифра Температура, °С Буква в %
X –55 4 +65 A ±1
Y –30 5 +85 B ±1,5
Z +10 6 +105 C ±2,2
7 +125 D ±3,3
8 +150 E ±4,7
9 +200 F ±7,5
P ±10
R ±15
S ±22
T +22/–33
U +22/–56
V +22/–82

Кроме описанной выше зависимости от температуры, керамика 2‑го класса также имеет явную зависимость емкости от приложенного постоянного или медленно меняющегося напряжения. Суть этого явления заключается в том, что при приложении постоянного напряжения к сегнетоэлектрикам, используемым в качестве керамики в конденсаторах 2‑го класса, происходит снижение диэлектрической проницаемости из-за эффектов поляризации. Как следствие, уменьшается и связанная с диэлектрической проницаемостью емкость. В англоязычной документации это явление часто описывается термином DC-bias (смещение по постоянному току).

Это свойство практически никогда не упоминается при попытках классификации конденсаторов, и конкретные значения изменения емкости могут быть получены в основном при изучении технической документации на конкретное изделие.

Также необходимо отметить, что значительный вклад в описание данного явления внесен сотрудниками японской фирмы Murata. Ими были проведены исследования доменных структур керамики и предложены интерактивные программные средства для инженеров — разработчиков аппаратуры, позволяющие учесть DC-bias при проектировании. На рис. 3 можно увидеть пример от Murata — здесь представлена зависимость емкости от постоянного напряжения для керамических конденсаторов 2‑го класса (X5R, X7R).

Рис. 3. Пример зависимости емкости керамики X5R, X7R от приложенного постоянного напряжения (Murata)

Прямое соответствие между типом керамики и частотным диапазоном указывается в технической документации на тот или иной конденсатор. Считается, что конденсаторы 1‑го класса являются более высокочастотными и имеют в верхнем высокочастотном диапазоне наименьшие потери и наименьшее рассеяние. Тем не менее конденсаторы 1‑го класса имеют прямую зависимость максимальной рабочей частоты от номинала конденсатора. Это можно увидеть в таблице 4 при сравнении двух видов керамики в частотной области.
Таблица 4.Сравнение керамики 1‑го и 2‑го классов

10 пФ 100 пФ 1 нФ 10 нФ 100 нФ 1 мкФ
C0G (класс 1) 1550 MГц 460 MГц 160 MГц 55 MГц
X7R (класс 2) 190 MГц 56 MГц 22 MГц 10 MГц

И следует иметь в виду, что диэлектрики 2-го, 3‑го и 4‑го классов являются пьезоэлектриками, а потому конденсаторы данных классов подвержены микрофонному эффекту. Это обязательно необходимо учитывать при решении о применении конденсаторов указанных классов на частотах выше 200 МГц. Но при использовании подобных конденсаторов в источниках питания, даже импульсных, микрофонный эффект проявляется не так явно, за исключением случаев, когда рабочая частота находится в звуковом диапазоне. Влияние пьезоэффекта на керамику 2‑го класса меньше, чем на керамику 3‑го и 4‑го классов. Наличие пьезоэффекта у большинства типов керамики, применяемой при производстве керамических конденсаторов, требует при проектировании электрических цепей с керамическими конденсаторами обязательного учета реактивной мощности, рассеиваемой на конденсаторах, поскольку в условиях, когда реактивная мощность равна или превышает активную мощность, рассеиваемую на конденсаторах, происходит быстрое старение керамики с последующим ее разрушением. Это особенно важно, когда керамические конденсаторы используются в силовых или фильтрующих цепях, например в цепях питания процессоров компьютеров.

Кроме классификации по типу керамики, керамические конденсаторы ранжируются по конструктивному исполнению. Различают следующие группы керамических конденсаторов:

  • дисковые конденсаторы с полимерным покрытием для печатного монтажа (disk);
  • однослойные керамические конденсаторы (single layer);
  • многослойные прямоугольные конденсаторы для поверхностного монтажа (multilayer);
  • бескорпусные дисковые конденсаторы для поверхностного монтажа для использования в УВЧ-диапазоне (дециметровый диапазон волн);
  • трубчатые конденсаторы для печатного монтажа, в настоящее время применяются крайне редко.

Однослойные (монолитные) керамические конденсаторы (Single Layer Ceramic Capacitor, SLCC)

В классе керамических конденсаторов следует отметить тип так называемых однослойных, или монолитных, конденсаторов.

Поскольку для производства SLCC используются те же керамики, те же проводящие материалы и во многом схожие технологии, что и для производства многослойных конденсаторов, имеется значительное сходство свойств MLCC и SLCC по отношению к температуре и частоте.

Однослойные керамические конденсаторы представляют собой в некотором роде элементарный классический конденсатор, поскольку их конструкция состоит из двух электродов, между которыми расположен слой высокочастотной керамики (рис. 4).

Рис. 4. Конструкция однослойного конденсатора компании Dielectric Laboratories

Конденсаторы этого типа производятся по технологии спекания разнородных материалов и представляют собой, по сути, композитный сплав керамика-металл. Поэтому они предназначены в первую очередь для применения в интегральных сборках, в том числе сверхвысокочастотных. Хотя некоторые производители, например компания Vishay, по этой же технологии выпускают дисковые конденсаторы (Disk) для печатного монтажа. К несомненным преимуществам однослойных монолитных конденсаторов относятся:

  • очень низкие потери на прохождение и малое рассеяние на частотах до 50 ГГц;
  • диапазон рабочих частот: до 100 ГГц;
  • надежная и прочная конструкция, в том числе на излом;
  • номинальная емкость: 0,04–6200 пФ;
  • диэлектрическая постоянная керамики: 14–25000;
  • рабочее напряжение: до 100 В.

Классификация однослойных конденсаторов

Существует несколько вариантов классификации однослойных конденсаторов. Один из них использует компания Dielectric Laboratories. Он включает следующие типы:

  • Border Cap — обычные плоские широкополосные конденсаторы с уменьшенной на одной или двух сторонах металлизацией. Уменьшение площади металлизации помогает предотвратить замыкание обкладок при монтаже и улучшает визуальный контроль Внешний вид и типы таких конденсаторов представлены на рис. 4.
  • Di-Cap — обычные плоские широкополосные конденсаторы, площадь металлизации которых равна площади керамики. Используются в диапазоне частот 100 кГц – 80 ГГц. Этого же типа конденсаторы могут быть выводными (рис. 5).
  • Gap Cap — два последовательно соединенных конденсатора на одной керамической пластине (рис. 6). Конденсаторы этого типа могут последовательно включаться в микрополосковую линию без использования проводников.
  • Bar Cap1— конденсаторные сборки. Основной диапазон применений до 30 ГГц. Производятся для использования, в том числе, в монолитных сверхвысокочастотных микросхемах (monolithic microwave integrated circuit — MMIC), рис. 7.
  • Bi-Cap (Binary-Cap) — несколько конденсаторов на одной керамической пластине. Емкости соотносятся как степени двойки. Основной диапазон применений до 30 ГГц. Используются при прототипировании и тонкой настройке схем. Имеют размеры, сравнимые с геометрией компонентов, используемых в СВЧ-устройствах. Конденсаторы на одной пластине могут применяться как одиночно, так и в комбинации (рис. 8).
  • T‑Cap — серия конденсаторов, аналогичная Di-Cap. Имеет другой размерный ряд.
  • Milli-Cap — конденсаторы для поверхностного монтажа.

Рис. 5. Выводные конденсаторы Di-Cap от Dielectric Laboratories

Рис. 6. Gap-Cap от Dielectric Laboratories

Рис. 7. Bar-Cap от Dielectric Laboratories

Рис. 8. Bi-Cap от Dielectric Laboratories

Представляет интерес сравнительная частотная характеристика нескольких типов однослойных конденсаторов, представленная на рис. 9. Далее подобная диаграмма будет представлена для многослойных конденсаторов.

Рис. 9. Сравнительная частотная характеристика разных типов однослойных конденсаторов

Применение SLCC

В силу обусловленных конструкцией классического однослойного конденсатора небольших значений емкости и выдающихся частотных свойств керамик, SLCC получили максимальное распространение в высокочастотных и сверхвысокочастотных приложениях. Применение видов керамики с большими значениями диэлектрической постоянной позволяет поддерживать тренд на перманентную миниатюризацию данного класса конденсаторов. Наглядную иллюстрацию этому можно найти в материалах компании AVX [2] (рис. 10).

Рис. 10. Миниатюризация SLCC [1]

Типичным примером свойств, удовлетворяющих современным требованиям к СВЧ-комплектующим, можно считать серию сверхширокополосных блокирующих однослойных керамических конденсаторов GX от AVX [2]. Изделия характеризуются сверхмалыми вносимыми потерями и малыми обратными потерями. Используются в диапазоне частот до 40 ГГц и напряжений до 50 В, имеют емкости до 100 нФ и форм-фактор 0603-0201. На рис. 11 представлен типичный график вносимых потерь для серии GX0S.

Рис. 11. Вносимые потери (S21) для серии блокирующих конденсаторов GX0S (AVX)

Назначение

В большинстве случаев рупорная акустика предназначена для воспроизведения средних и высоких частот, позволяя улучшить уже имеющуюся акустику. Лучший эффект достигается при использовании с сабвуфером (усилителем), воспроизводящим НЧ.

Дополняя и меняя компоненты аудиосистемы можно добиться требуемого звучания в автомобиле и рупоры – отличное оборудование, чтобы повысить качество музыки в авто.


Рупор

Одно из популярных мест для подключения рупоров – передняя часть автомобиля. Рупора устанавливаются фронтально на стенке корпуса. Внутри образуется волновод, имеющий отверстие наружу.

Чтобы правильно подключить рупора к магнитоле требуется использовать конденсатор. Рекомендуется также проводить настройку звука, чтобы правильно распределить звучание и достигнуть максимального эффекта погружения.


Конденсатор

Установка

Как установить и подключить рупора без усилителя напрямую к магнитоле? Первым действием требуется изготовить или приобрести подиум для динамиков.


Подиумы для динамиков

В большинстве случаев, подиум поставляется вместе с колонкой, но в отдельных случаях требуется изготовить его самостоятельно. Специальных знаний это не требует, и достаточно просто вымерять размеры динамика и выпилить под эти размеры подиум. Когда не хватает знаний или инструментов – рекомендуется обратиться к специалисту.

Устанавливаются рупоры двумя способами:

  1. Диагонально – правый динамик направляется на левое сиденье, а левый, соответственно, на правое.
  2. Прямо – колонки направляются напрямую на слушателя.

Варианты равноценны друг другу и при выборе требуется опираться только на схему салона и аудиосистемы автомобиля. Рекомендуется попробовать две вариации, и только после этого делать выбор окончательный выбор.

Место установки зависит от расположения аудиосистемы, и в большинстве случаев, подбирается индивидуально для каждого динамика.

Применение конденсаторов в ВЧ и СВЧ

В высокочастотных приложениях наибольшее распространение получили конденсаторы на основе керамических, стеклянных и органических диэлектриков. Из числа последних наибольшее распространение получили изделия на основе диэлектриков из поликарбоната, полиэстера и полипропилена. Также в текущем десятилетии нынешнего века получили значительное развитие конденсаторы с использованием кремниевых материалов и технологий.

Рассмотрим наиболее распространенные и широко применяющиеся сегодня типы конденсаторов. В связи с развитием новых технологий микроминиатюризации и широким распространением их не только в специальных отраслях промышленности, но и в бытовой технике одним из самых распространенных типов конденсаторов являются керамические конденсаторы.

Подключение

Установить дополнительное оборудование и изготовить подиумы – половина дела. Требуется подключить установленные устройства. Как подключить рупора через штатную магнитолу или динамики?

Когда подключение происходит напрямую к магнитоле (без усилителя) – требуется использовать конденсатор, являющийся фильтром для определённых частот. Он позволяет увеличить срок службы динамиков, но возможности его ограничены. При покупке нового оборудования конденсатор идёт в комплекте, но если его нет – требуется подобрать и приобрести его самостоятельно. Подключаются рупора напрямую к выводам магнитолы, но на плюсе должен быть установлен конденсатор.

Подключить рупора к динамикам можно так же, как и обычные колонки. Плюс подключается к положительному проводу (через конденсатор), а минус – к отрицательному.

Подключить рупора к усилителю можно по принципу обычных колонок, и различий в подключении нет. Сам усилитель устанавливается по схемам, указанным в инструкции к оборудованию. В большинстве случаев, подключение осуществляется специальными проводами (межблочными) к магнитоле, а затем проводятся силовые провода (питание). После этого подключаются акустические провода к колонкам или сабвуферу, соблюдая полярность.

Ещё один вид подключения – через кроссовер. Это устройство для разделения сигнала по частотам. Изготовлено чаще всего в виде отдельного блока и отлично подходит для подключения многокомпонентной аудиосистемы.

При подключении требуется соблюдать все требования безопасности.

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]