Как выбрать стационарный ЦАП для домашней аудиосистемы: 10 основных вопросов

Что такое ЦАП и как он работает

Цифро-аналоговый преобразователь — это устройство, конвертирует цифровой сигнал в виде двоичного кода в аналоговый, в виде тока, напряжения или заряда.

В смартфонах, компьютерах и плеерах преобразователь — это микросхема со стереовыходом на разъеме ⅛” или RCA.

Более сложные преобразователи — это уже автономные устройства с возможностью подключения к компьютерам или аудиосистемам, большим количеством каналов и разъемов. Преобразователи отличаются друг от друга качеством и точностью передачи сигнала.

Любой ЦАП работает с двоичным кодом. Устройство преобразует код в электрический сигнал: единица соответствует наличию напряжения, при нуле напряжения нет. После этого электрический сигнал поступает на акустическую систему, где и превращается в звуковые колебания.

Способы реализации ЦАП с взвешенным суммированием токов

Рассмотрим построение простейшего ЦАП с взвешенным суммированием токов. Этот ЦАП состоит из набора резисторов и набора ключей. Число ключей и число резисторов равно количеству разрядов n входного кода. Номиналы резисторов выбираются в соответствии с двоичным законом. Если R=3 Ом, то 2R= 6 Ом , 4R=12 Ом, и так и далее, т.е. каждый последующий резистор больше предыдущего в 2 раза. При присоединении источника напряжения и замыкании ключей, через каждый резистор потечет ток. Значения токов по резисторам, благодаря соответствующему выбору их номиналов, тоже будут распределены по двоичному закону. При подаче входного кода Nвх включение ключей производится в соответствии со значением соответствующих им разрядов входного кода.

Будет интересно➡ Зачем нужен преобразователь частоты

Ключ замыкается, если соответствующий ему разряд равен единице. При этом в узле суммируются токи, пропорциональные весам этих разрядов и величина вытекающего из узла тока в целом будет пропорциональна значению входного кода Nвх. Сопротивление резисторов матрицы выбирают достаточно большое (десятки кОм). Поэтому для большинства практических случаев для нагрузки ЦАП играет роль источника тока. Если на выходе преобразователя необходимо получить напряжение, то на выходе такого ЦАП устанавливается преобразователь “ток-напряжение”, например, на операционном усилителе.


Плата ЦАП.

Однако при смене кода на входах ЦАП меняется величина тока, отбираемая от источника опорного напряжения. Это является главным недостатком такого способа построения ЦАП. Такой метод построения можно использовать только в том случае, если источник опорного напряжения будет с низким внутренним сопротивлением. В другом случае в момент смены входного кода изменяется ток, отбираемый у источника, что приводит к изменению падения напряжения на его внутреннем сопротивлении и, в свою очередь, к дополнительному напрямую не связанному со сменой кода изменению выходного тока. Исключить этот недостаток позволяет структура ЦАП с переключающимися ключами.


Таблица сигналов четырехразрядного ЦАП (опорное напряжение 5 В).

В такой структуре имеется два выходных узла. В зависимости от значения разрядов входного кода соответствующие им ключи подключаются к узлу, связанному с выходом устройства, или к другому узлу, который чаще всего заземляется. При этом через каждый резистор матрицы ток течет постоянно, независимо от положения ключа, а величина тока, потребляемого от источника опорного напряжения, постоянна.

Общим недостатком обеих рассмотренных структур является большое соотношение между наименьшим и наибольшим номиналом резисторов матрицы. Вместе с тем, не смотря на большую разницу номиналов резисторов необходимо обеспечивать одинаковую абсолютную точность подгонки как самого большого, так и самого маленького по номиналу резистора. В интегральном исполнении ЦАП при числе разрядов более 10 это обеспечить достаточно трудно.

От всех указанных выше недостатков свободны структуры на основе резистивных R-2R матриц. При таком построении резистивной матрицы ток в каждой последующей параллельной ветви меньше чем в предыдущей в два раза. Наличие только двух номиналов резисторов в матрице позволяет достаточно просто осуществлять подгонку их значений.

Выходной ток для каждой из представленных структур пропорционален одновременно не только величине входного кода, но и величине опорного напряжения. Часто говорят, что он пропорционален произведению этих двух величин. Поэтому такие ЦАП называют умножающими. Такими свойствами будут обладать все ЦАП, в которых формирование взвешенных значений токов, соответствующих весам разрядов, производится с помощью резистивных матриц.

Дополнительный материал по теме:

Интегральные технологии позволяют достаточно просто формировать на кристалле резисторы, например, КМОП – технология. Как и все прочие ИС, созданные на ее основе, такие ЦАП, характеризуются низкой стоимостью и низким потреблением. Недостатком данной технологии- это паразитные емкости, и вытекающей из него низкое быстродействие. Большего быстродействия поможет достичь биполярная технология. НО она не рассчитана для создания точных резисторов.

Поэтому при использовании таких технологий ЦАП делается на основе транзисторных источников тока. Зависимость выходного тока транзисторных источников тока от величины питающего напряжения нелинейна, поэтому такие ЦАП умножающими не являются. Кроме использования по прямому назначению умножающие ЦАП используются как аналого-цифровые перемножители, в качестве кодоуправляемых сопротивлений и проводимостей. Они широко применяются как составные элементы при построении кодоуправляемых (перестраиваемых) усилителей, фильтров, источников опорных напряжений, формирователей сигналов и т.д.


Цифро-аналоговый преобразователь.

Характеристики

ЦАП во многом определяет параметры всей аудиосистемы и непосредственно влияет на качество получаемого аудиосигнала.

Основные параметры уровня качества записи в цифровом формате: частота дискретизации (измеряется в Гц), разрядность (измеряется в бит) и битрейт (измеряется в кбит/с). Эти характеристики будут главными в выборе ЦАП.

…И ПОЧЕМУ СЕЙЧАС ЭТОГО ДЕЛАТЬ НЕ СТОИТ

Но что мы имеем сегодня? Современные дельта-сигма ЦАПы, во-первых, это уже не классические “однобитники”. По сути это уже гибридные преобразователи. Сохраняя однобитную архитектуру самого чипа, они могут похвастаться высоким разрядом. Как? Хотел бы сказать, что это просто, но не совсем. Интерполирующий цифровой фильтр принимает 16 или 24-битный поток, далее дельта-сигма модулятор “справляется” с ним в 3/6/X битной разрядности за счет… многоуровневого выхода. Да, той самой технологии DEM, лежавшей в основе интегральных мультибитных схем Philips.

Кроме того, современный дельта-сигма чипы могут похвастаться недостижимыми ТТХ для R-2R решений. Крайняя мультибитная интегральная схема PCM1704k обеспечивала THD+N 0,0008% и динамический диапазон на уровне 112 дБ. У актуального топа от ESS — ES9038PRO — эти показатели соответственно следующие: 0,0004% и 140 дБ.

Но не цифры звучат. Звучит готовое, завершенное изделие. И влияние множества прочих факторов на итоговый звук куда больше, чем то, по какому принципу работает ЦАП. До сих с теплом в сердце вспоминаю ЦАПы от Wolfson. Устаревшие по сегодняшним меркам они все еще могут впечатлить. Но не сами по себе, а лишь как часть грамотно спроектированного и добросовестно реализованного устройства.

Частота дискретизации

Частота дискретизации определяет, как цифровые данные будут конвертироваться в аналоговый сигнал. Чем выше частота дискретизации, тем результат преобразования будет ближе к исходному сигналу.

Для корректного воспроизведения аналогового сигнала из цифровой формы необходимо, чтобы частота дискретизации была в два раза выше, чем максимальная частота в спектре сигнала.

Подкованные в технических науках могут найти обоснование явлению в теореме Котельникова.

Это означает, что для воспроизведения слышимого человеком звукового диапазона частот 20-20 000 Гц необходимая частота дискретизации будет составлять до 40 000 Гц.

Соответственно, частота дискретизации Audio CD составляет 44.1 кГц, а mp3-файлов — 48 кГц.

ЦАП, проигрывающий такие файлы, должен иметь частоту дискретизации не менее 48 кГц, иначе звук будет искажаться. При обработке некомпрессированных форматов частота дискретизации должна быть еще выше. Она может доходить до 96 кГц, 192 кГц, и более. Основные используемые значения: 44,1 кГц, 48 кГц, 88,2 кГц, 96 кГц, 192 кГц.

Относимся с уважением к наследию предков

Вместо тупого моста ставим супер-быстрые диоды в выпрямитель, что ощутимо снижает «удары» тока в моменты запирания диодов. Этот приём достаточно популярен и вполне осмыслен, так что воспользуемся им и мы:

Кстати, именно непонимание того, как развязать линейные стабилизаторы по ВЧ и приводит дотошных разработчиков к тому, что на каждый блок схемы начинают ставить отдельный трансформатор. Другое весьма популярное, но тоже затратное решение проблемы последовательных стабилизаторов: использование связок источник тока — параллельный стабилизатор. В данном случае с развязкой всё в порядке, только вот мощности рассеивать приходится с немалым запасом.

Как выбрать преобразователь

Сначала нужно определиться с задачами и ценой. Если задача — слушать просто музыку, подойдут портативные или настольные модели. Для студии их уже не хватит, но с бытовыми задачами они справятся.

Компактные модели имеют возможность подключения и питания по USB напрямую или через кабель. Размер может быть сопоставим с USB-накопителем или небольшим внешним блоком. Интерфейс линейного аудиовыхода чаще всего — в виде разъема 1/8” (стерео) или RCA.

  • Audioquest DragonFly Red

Настольные модели оснащены различными видами цифровых входов, USB для подключения к компьютеру и отдельным источником питания. Аналоговые выходы могут быть представлены в нескольких вариантах, балансных и небалансных. Может присутствовать отдельный усилитель для наушников.

  • Art USBDI
  • RME Adi-2 Dac FS

Для профессиональной студийной работы используют модели с возможностью как цифро-аналогового преобразования, так и аналогово-цифрового. Такие модели больше размером, ставятся в рэковую стойку, оборудованы большим количеством разъемов и чипами очень высокого качества.

  • RME ADI-8 QS
  • Antelope Audio Orion 32 HD | Gen 3
  • Ferrofish A32 AD/DA Converter
  • Antelope Audio Pure2

ЦАП для преобразования двоично-десятичных чисел

Рассмотрим ЦАП для преобразования двоично-десятичных чисел (рис. 3.90).


Для представления каждого разряда десятичного числа используется отдельная матрица R − 2R (обозначены прямоугольниками). Z0…Z3 обозначают числа, определенные состоянием ключей каждой матрицы R − 2R.

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Задать вопрос

Принцип действия становится понятным, если учесть, что сопротивление каждой матрицы R, и если выполнить анализ фрагмента схемы, представленного на рис. 3.91.


Из анализа следует, что

U2 = U1 · [ ( R||9R) / (8,1R + R||9R) ]

R||9R = (R · 9R) / (R + 9R) = 0,9R

Следовательно, U2 = 0,1 U1. С учетом этого получим?

uвых= − ( U0Roc / 16R ) · 10−3 ( 103 · Z3 + 102 · Z2 + 10 · Z1 + Z0)

Наиболее распространенными являются ЦАП серий микросхем 572, 594, 1108, 1118 и др. В табл. 3.2 приведены…

Возможности для подключения

Цифро-аналоговый преобразователь должен иметь хотя бы один цифровой вход, например S/PDIF, или возможность подключения к компьютеру по USB/Thunderbolt/Firewire. S/PDIF может быть Coaxial (коаксиальным) или Optical (оптическим). Цифровых разъемов может быть несколько.

Аналоговые выходы компактных моделей, как правило, оснащены разъемами ⅛” и RCA. Настольные модели оборудуются балансным стереовыходом XLR или 1/4”, и дополнительными небалансными RCA. Студийные устройства могут быть оснащены большим количеством аналоговых выходов.

Учитывайте при выборе конвертера, что его характеристики должны соответствовать или быть выше параметров аудио, с которым девайс будет работать. Иначе могут возникнуть искажения или ЦАП в принципе свои функции выполнять не будет.

Но помните и о субъективном восприятии. Попробуйте отслушать несколько ЦАП, и обратите внимание на то, какой из них субъективно будет звучать привлекательнее. Подходящие технические параметры и субъективно приятное звучание — сочетание, которое укажет на нужную покупку.

С профессиональными устройствами несколько сложнее: помните, что главное в профессиональной технике — нейтральность и чистота в передаче аудио.

ПОЧЕМУ РАНЬШЕ РУГАЛИ ДЕЛЬТА-СИГМА ЦАП?…

А вот и нет. Я не хочу писать, что та или иная принципиальная схема сегодня лучше или хуже. Во-первых, сегодня разработчики научились готовить дельта-сигму так, что все детские болезни этих ЦАПов остались если не в прошлом, то вне поля нашего зрения. Во-вторых, сам факт ухода с рынка мультибитных решений говорит о том, что не стоит заниматься археологией и искать те самые AD’шки и TDA’шки на мировых барахолках. Разве что для того, чтобы унять свое любопытство.

Сегодня мультибит-ЦАПы и R-2R матрицы стали чем-то вроде экзотики. Встречаются нечасто. Вызывают неподдельный интерес. И мой опыт говорит, что не понапрасну. Но раньше, когда дельта-сигма была относительно молода, сложились определенные стереотипные паттерны о ее звуке супротив правоверного R-2R решения.

Основная претензия, закидываемая в лагерь дельта-сигмы, это то, как она работает с атакой. Звук имеет три фазы: атаку (установление), стационарную часть и затухание (спад). При искажении воспроизведение любой из фаз, в частности атаки, нарушается структура звука, что изменяет тембр и его восприятие. Грубо говоря, звучание одного инструмента, правильно записанного, но воспроизводимого с искажением, скажем, атаки, уже не ощущается как оригинальное звучание. При этом у каждого инструмента эти фазы имеют разные временные характеристики и ведут себя по-разному.

Отсюда вывод, что правильное “течение” фазы атаки (в один такт) — залог натуральности звучания и точной передачи тембра. И замеры, проводимые ранее с ЦАПами, построенными на разных архитектурах, говорили о проблемах дельта-сигмы с сохранением идентичности фаз. В частности — атаки. Если вы когда-нибудь общались с адептом секты свидетелей Святого Хлопка, то понимаете, о чем я. Пожалуй, тема звука и тембра — хороша для отдельного материала. Не так ли?

МЕАНДР: R-2R vs ДЕЛЬТА-СИГМА ЦАП

Итак, как проводились такие замеры? При помощи подачи на ЦАП импульсного сигнала — меандра — и замера получаемого графика. Меандр в данном случае это функция напряжения от времени. Проще говоря, это график, где на оси X время, а на оси Y — напряжение. Выглядит он следующим образом.

Штука эта широко используется в технике, в частности для проведения замеров в аудио. Меандр состоит из прямой линии нулевой отметки (фаза отсутствия сигнала), вертикальной линии фронта, или атаки, прямой линии положительного или отрицательного полупериода (стационарная фаза) и спада (затухания). Меандр показывает через напряжение, как ведет себя сигнал на разных стадиях своего существования.

На рисунке выше приведен исходный сигнал в идеальном виде. Это случай in vitro — эталон для дальнейшего сравнения. Не более.

Далее мы видим меандр, образованный посредством R-2R-преобразователя. Он отличается от исходного тестового меандра, но посмотрите на фронт атаки: он перпендикулярен к нулевой отметке. Фактически атака сформирована в один такт. Скругление меандра на краях атаки и затухания неизбежны из-за ограничения частотного диапазона. При этом кривая стационарной фазы линейна.

А теперь смотрим на меандр, полученный после дельта-сигма преобразования. Во-первых, атака. Атака явно не “умещается” в один такт и ее наклон далек от прямого угла. Во-вторых, стационарная фаза имеет волнообразные искажения на всей ее продолжительности. Также отмечаем всплеск напряжения на конце фронта. Это и есть тот самый подзвон, за который было принято ранее ругать дельта-сигму. Ну и за размазанность атаки (во всяком случае по замерам!). Помимо искажений, атака нарастала постепенно, не давая того самого “хлопка”. Как я уже писал выше, при нарушении течения фаз или искажения в них, нарушается передача и восприятие тембра.

Полимеры правят балом

Последней доработкой, направленной на достижение наиболее верной передачи звука, стало «выглаживание» питания.

В критических местах были заменены обычные (пусть и неплохие ChemiCon) алюминиевые электролиты из набора — на твердотельные алюминиевые Sanyo OS-CON. Поскольку собирал два одинаковых набора в параллель, была возможность устроить «А/Б» тестирование. Разница на грани слышимости, но она есть! Без сигнала с обычными электролитами, на (очень) большом усилении, в наушниках присутствовало некое «шумовое пространство». Полимерные электролиты переносят нас в абсолют.


Sanyo OS-CON — фиолетовые бочонки без надпила на крышке.

Усиление полученного сигнала

Разумеется одного резистора после ЦАП не достаточно. Получаемое на резисторе напряжение следует усилить. Для этого как нельзя лучше подходит неинвертирующий усилитель на ОУ.

Такой усилитель имеет очень большое входное сопротивление (более 1012 ÷ 1014 Ом), определяемое входным сопротивлением ОУ. При этом выходное сопротивление близко к нулю. Это идеально подходит для согласования каскадов по сопротивлению.

Коэффициент усиления задается соотношением резисторов и равен K=1+(R2/R1). Номиналы резисторов выбирают из ряда 1…100 кОм.

Главное преимущество такого включения состоит в том, что неинвертирующий усилитель не содержит в цепи ОС конденсатора, приводящего к фазовым искажениям.

В целом такой подход далеко не новый. Его можно встретить еще в «Исскустве схемотехники» Хорвица и Хилла 1976 года. Так что всё новое — это хорошо забытое старое….

Еще одним плюсом применения предлагаемой схемы выхлопа для ЦАП-а является то, что резистор, отвечающий за преобразование, привязывает неинвертирующий вход ОУ к земле.

↑ Тест №2

Теперь тестирую два устройства: 1.ЦАП на РСМ58
с выхлопом «рогов – дискрет», описанным здесь:

2. Последняя поделка на РСМ1700

в дифференциальном включении.


Оба аппарата собраны по одинаковой топологии, SRC4192 работает в режиме «output port master 256fs» , тактовая частота 24.576.000мгц для сетки, кратной 48кгц. SM5824 с половинной частотой (на полной работает со сбоями).
Использованы два источника цифрового сигнала: EDEL USB Audio interface и Phantom USB Interface на TAS1020. Режим 16*48 и 24*64. Тут сразу вылез косяк измерилки от Creative: Данные для 16*48.


И для 24*96.

Поразительная разница в уровне шумов. Оба ЦАП обогнали Creative по шумам. Вот графики шумов: 16*48:


и 24*96:


я не думаю, что это связано с работой цап, там же SRC все усредняет, а вот АЦП у Creative на 24*96 явно работает в лучшем для него режиме, поэтому меньше отсебятины.

Зато THD неизменно, что и понятно. 16*48:


и 24*96:


Причину такого поведения РСМ58 здесь объяснить не сложно. Выхлоп «Рогов» на собран был на том, что есть, без подбора по h21, поэтому и звучание у него более «гармоничное». Кстати его звучание мне нравится больше, чем РСМ1700 с даташитным выхлопом. Хотя по измерению последняя явно лучше.

Зато в этом случае ясно одно – источник цифрового сигнала на измерение влияния не оказывает. Я даже через ASIO прогнал. Не думаю, что разрешающей способности этой измерительной системы, равно как и самих моих ЦАП хватит, чтоб уловить разницув источниках, если вообще она есть. На слух я ее не слышу.

BOM, или Bill of Materials

Конечно, пятьюдесятью долларами дело не ограничивается. Керамические конденсаторы из набора были заменены плёнкой. Диоды Шоттки, качественные электролиты, да много ещё чего пришлось добавить, не говоря уже о корпусе. Ну и, конечно, мой усилитель HotFET: всего 2 (два) каскада усиления от выхода ЦАП до наушников или выхода на усилитель. Ни много ни мало, а только в самом усилителе 32 транзистора насчитал в стерео варианте. Да транзисторы все — JFET’ы да depletion MOSFET’ы. Никак в полтинник зелёных не укладываюсь даже по комплектующим

Рейтинг
( 1 оценка, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]