Схема и сборка самодельного блока питания с регулировкой напряжения и тока

Двухполярный блок питания построен на регулируемых линейных стабилизаторах LM317 и LM337, которые способны выдавать ток до 1.5А, регулировать выходное напряжение в диапазоне ±1.25?37В и обладают защитами от КЗ, перегрузки, а также от превышения температуры. Таким образом, регулируемый блок питания на LM317+LM337 может быть применен для запитывания различной радиоэлектронной аппаратуры стабилизированным двухполярным напряжением, с возможностью установки необходимого значения.

Я изготовил данный БП для удобства проверки маломощных УМЗЧ.

Основные технические характеристики

Входное напряжение (AC), В ….. не более 25-0-25

Максимальный выходной ток, А ….. 2.2

Номинальный выходной ток, А ….. 1.5

Выходное напряжение (DC), В ….. регулируемое от ±1.25 до ±30

Примечание. Номинальный и максимальный токи указаны при разнице до 15В между входным и выходным напряжением стабилизатора. Если эта разница будет больше, то максимальный и номинальный токи будут снижаться в соответствии с графиком, приведенным ниже.

Также важно знать, что согласно технических описаний на LM317 и LM337, чтобы получить необходимый ток, рассеиваемая мощность на стабилизаторе не должна превышать 20Вт, иначе будет срабатывать защита по перегрузке и будет происходить ограничение выходной мощности.

Расположение выводов LM317 и LM337

Схема двухполярного регулируемого блока питания на LM317+LM337

Напряжение переменного тока с вторичной обмотки трансформатора поступает на помехоподавляющий конденсатор C1, а после него на диодный мост VDS1, где выпрямляется и поступает на линейные стабилизаторы LM317 и LM337. Регулируемый стабилизатор LM317 стабилизирует положительное плечо, а стабилизатор LM337 стабилизирует отрицательное плечо.

Регулировка напряжения осуществляется подстроечными резисторами R5 и R6. Рассчитать необходимое значение можно по формуле (для положительного плеча):

Виды источников питания

Все источники питания можно разделить на два больших класса:

  • импульсные;
  • трансформаторные.

Эти термины не очень точные – трансформаторный источник питания может иметь как линейный, так и импульсный стабилизатор напряжения, а импульсный БП содержит трансформатор.

Каждый тип имеет свои преимущества и недостатки, базирующиеся на принципе действия. Трансформаторный источник питания с линейным регулятором напряжения распределяет энергию между нагрузкой и регулирующим элементом (как правило, мощным транзистором) и представляет собой делитель напряжения. Одним плечом служит регулирующий элемент, другим – нагрузка.

Рекомендуем: Виды блоков питания и их назначение

При уменьшении напряжения на нагрузке (например, из-за увеличения потребляемого тока) транзистор приоткрывается и поддерживает это напряжение постоянным. При увеличении напряжения на нагрузке процесс обратный – транзистор призакрывается. Так происходит процесс стабилизации.


Принцип действия линейного стабилизатора.

Минусы этой схемы:

  • требуется, чтобы входное напряжение было заметно выше выходного;
  • через регулирующий транзистор постоянно идет ток, равный току нагрузки — впустую рассеивается большая мощность;
  • КПД даже теоретически не может превышать отношение Uвых/Uвх.

Плюсами являются:

  • относительно простая и недорогая схема;
  • выходное напряжение свободно от высокочастотных паразитных составляющих (помехи по питанию минимальны).

Импульсный источник питания действует по другому принципу. Здесь энергия распределяется во времени. У ключевых транзисторов всего два состояния – они либо полностью открыты, либо полностью закрыты. Длительность открытого положения определяет средний ток через первичную обмотку трансформатора и усредненное напряжение на выходных конденсаторах фильтра (соответственно, и на нагрузке). Этим процессом удобно управлять методом широтно-импульсной модуляции (ШИМ), когда частота преобразования остается постоянной, а меняется лишь длина импульса.

В идеальном импульсном источнике стабилизированного напряжения у ключей в открытом положении нулевое сопротивление, падение напряжения отсутствует, а в закрытом – полностью отсутствует ток. Поэтому энергия на транзисторах не рассеивается. На практике не все так радужно. Идеальных транзисторов не существует, поэтому в открытом состоянии на них падает определенное напряжение (сопротивление не равно нулю), а в закрытом существует ток утечки (сопротивление не равно бесконечности).

Но основные потери, снижающие КПД, происходят по другой причине. Транзисторные ключи переходят из одного состояния в противоположное не мгновенно. На это нужно время, зависящее от быстродействия элемента. Во время перехода через транзистор идет сквозной ток, на нем падает напряжение – следовательно, выделяется мощность. Эти потери называются коммутационными, их величина зависит от частоты преобразования.


Реальный и идеальный ключ в импульсном источнике питания.

Но все равно, КПД такого источника выше, чем линейного. И это основной плюс такой схемы. Другое достоинство – меньшие габариты и вес источника питания. Это достигается за счет того, что преобразование осуществляется на достаточно высокой частоте – до нескольких десятков килогерц. Поэтому самый тяжелый и громоздкий элемент (силовой трансформатор) получается легким и компактным. Главным минусом является сложность схемы.

Обычно на ток до 2 А применяются линейные источники напряжения. Ближе к токам 3 А и выше достоинства импульсников начинают перевешивать.

Итог:

Стабилизатор вполне работоспособен и может быть использован как стабилизатор напряжения (при условии наличия нагрузки), так и стабилизатор тока. Также есть множество различных схем применения для увеличения выходной мощности, использования в качестве зарядного устройства для аккумуляторов и др. Стоимость сабжа вполне приемлемая, учитывая, что в оффлайне я могу купить такой минимум за 30 рублей, а в известном российском интернет магазине за 19 рублей, что существенно дороже обозреваемого.
На сём разрешите откланяться, удачи!

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Основные узлы регулируемого блока питания

Трансформаторный источник питания в большинстве случаев выполняется по следующей структурной схеме.

Узлы трансформаторного БП.

Понижающий трансформатор снижает напряжение сети до необходимого уровня. Полученное переменное напряжение преобразуется в импульсное с помощью выпрямителя. Выбор его схемы зависит от схемы вторичных обмоток трансформатора. Чаще всего применяется мостовая двухполупериодная схема. Реже – однополупериодная, так как она не позволяет полностью использовать мощность трансформатора, да и уровень пульсаций выше. Если вторичная обмотка имеет выведенную среднюю точку, то двухполупериодная схема может быть построена на двух диодах вместо четырех.


Двухполупериодный выпрямитель для трансформатора со средней точкой.

Если трансформатор трехфазный (и имеется трехфазная цепь для питания первичной обмотки), то выпрямитель можно собрать по трехфазной схеме. В этом случае уровень пульсаций наиболее низок, а мощность трансформатора используется наиболее полно.

После выпрямителя устанавливается фильтр, который сглаживает импульсное напряжение до постоянного. Обычно фильтр состоит из оксидного конденсатора, параллельно которому ставится керамический конденсатор малой емкости. Его назначение – компенсировать конструктивную индуктивность оксидного конденсатора, который изготовлен в виде свернутой в рулон полоски фольги. В результате получившаяся паразитная индуктивность такой катушки ухудшает фильтрующие свойства на высоких частотах.

Далее стоит стабилизатор. Он может быть как линейным, так и импульсным. Импульсный сложнее и сводит на нет все преимущества трансформаторного БП в нише выходного тока до 2..3 ампер. Если нужен выходной ток выше этого значения, проще весь источник питания выполнить по импульсной схеме, поэтому обычно здесь используется линейный регулятор.

Выходной фильтр выполняется на базе оксидного конденсатора относительно небольшой емкости.


Обобщенная блок-схема импульсного БП.

Импульсные источники питания строятся по другому принципу. Так как потребляемый ток имеет резко несинусоидальный характер, на входе устанавливается фильтр. На работоспособность блока он не влияет никак, поэтому многие промышленные производители БП класса Эконом его не ставят. Можно не устанавливать его и в простом самодельном источнике, но это приведет к тому, что устройства на микроконтроллерах, питающиеся от той же сети 220 вольт, начнут сбоить или работать непредсказуемо.

Дальше сетевое напряжение выпрямляется и сглаживается. Инвертор на транзисторных ключах в цепи первичной обмотки трансформатора создает импульсы амплитудой 220 вольт и высокой частотой – до нескольких десятков килогерц, в отличие от 50 герц в сети. За счет этого силовой трансформатор получается компактным и легким. Напряжение вторичной обмотки выпрямляется и фильтруется. За счет высокой частоты преобразования здесь могут быть использованы конденсаторы меньшей емкости, что положительно сказывается на габаритах устройства. Также в фильтрах высокочастотного напряжения становится целесообразным применение дросселей – малогабаритные индуктивности эффективно сглаживают ВЧ пульсации.

Регулирование напряжения и ограничение тока выполняется за счет цепей обратной связи, на которые подается напряжение с выхода источника. Если из-за повышения нагрузки напряжение начало снижаться, то схема управления увеличивает интервал открытого состояния ключей, не снижая частоты (метод широтно-импульсного регулирования). Если напряжение надо уменьшить (в том числе, для ограничения выходного тока), время открытого состояния ключей уменьшается.

Характеристики LM317t

Приведем основные параметры стабилизатора LM317:

  • Входное напряжение, max: 40 В.
  • Выходное напряжение, min: 1,25 В.
  • Опорное напряжение (Vref): от 0,1 до 1,3 В.
  • Ток нагрузки, max: 1,5 А.
  • Нестабильность выходного напряжения: 0,1 %.
  • Ток Adj: 50…100 мА.
  • Корпус: TO-220, TO-92, TO-3, D2PAK.

Подробные параметры смотрите в datasheet на русском языке, который можно скачать в конце статьи.

Как подобрать компоненты

Для трансформаторного источника подбирается, в первую очередь, трансформатор. В большинстве случаев он берется готовый из того, что есть. Этот узел должен выдавать требуемый ток при максимальном напряжении. Сочетание этих параметров обеспечивается габаритной мощностью трансформатора. Для промышленных устройств параметры можно узнать из справочника. Для случайных трансформаторов мощность можно определить по размерам сердечника (в сантиметрах).

Площадь сердечника для разных типов трансформаторов.

Мощность вычисляется по формуле:

P=S2/1.44 где:

  • P-мощность в Ваттах;
  • S- сечение в квадратных сантиметрах.

Для практических целей мощность надо еще умножить на КПД. Для примера, трансформатор с площадью сердечника 6 кв.см. при напряжении 35 вольт и выходном напряжении стабилизатора 30 вольт (общий КПД можно взять 0.75) способен отдать мощность P=(36/1.44)*0.75=18.75 ватт. Наибольший ток при этом составит I=P/U=18.75/35=0,5 А.

Если трансформатор проходит по мощности, но вторичная обмотка рассчитана на другое напряжение, ее можно удалить и намотать новую (если уместится). Количество витков рассчитывается так:

  • определяется количество витков на вольт по формуле 50/S, где S – площадь сердечника в кв.см.;
  • эта величина умножается на необходимый уровень напряжения.

Так, для площади 6 см на 1 вольт приходится 50/6=8,3 витка на вольт. Для напряжения 35 вольт обмотка должна иметь 35*8,3=291 виток. Диаметр провода рассчитывается по формуле D=0,02, где I – ток в миллиамперах. Для тока в 5 ампер надо взять провод диаметром 0,02*=70*0,02=1,4 мм.

Если для линейного регулятора подбирается мощный транзистор, основной критерий для применения – ток коллектора. Он должен с запасом перекрывать ток нагрузки. Этот параметр для распространенных отечественных и зарубежных транзисторов приведен в таблице.

ТранзисторНаибольший ток коллектора (постоянный), А
КТ818 (819)10
КТ825 (827)20
КТ8055
TIP3625
2N305515
MJE1300912

При работе в режимах, близких к максимальному току, транзисторы обязательно должны быть установлены на радиаторах.

Также надо обратить внимание на такой параметр, как максимальное напряжение между коллектором и эмиттером. При входном напряжении 35 вольт и выходном 1,5 разница составит 33,5 вольт, для некоторых полупроводниковых приборов это недопустимо.

Емкость оксидного конденсатора, стоящего после выпрямителя, выбирается исходя из нагрузки. Существуют формулы для расчета параметров фильтра, но на практике подход простой: чем больше, тем лучше. Сверху на емкость наложено два ограничения:

  • габариты конденсатора;
  • бросок тока на заряд, который может быть значительным при большой емкости.

Выходной конденсатор БП может иметь емкость около 1000 мкФ.

Зарубежные и российские аналоги

Чем можно заменить lm317 ? Полными аналогами микросхемы являются GL317, SG317, UPC317, ECG1900. Очень известным отечественным аналогом lm317t c фиксированным напряжением является микросхема KP142ЕН12. Если нужен регулируемый линейный стабилизатор, то подойдет КРЕН12А (можно и Б).

Безопасность при эксплуатации

Максимальное напряжение между входом и выходом не должно превышать 40 В. Мощность рассеивания не более 20 Вт. Температура пайки не должна превышать 260 °С, при соблюдении расстоянии от корпуса микросхемы более 1,6 мм и времени нагревания до 10 секунд. Температура хранения устройства должна находится в пределах от -65 до + 150 °С, рабочая температура не более + 150 °С.

Это максимальные значения, которые могут привести к повреждению устройства или повлиять на стабильность его работы. Микросхема хорошо защищена от тепловой перегрузки и короткого замыкания контактов. Однако не стоит превышать допустимые параметры при эксплуатации, для избежания выхода её из строя и достижения максимально надежной работы.

Схемы лабораторных блоков питания

В интернете можно найти множество схем лабораторных блоков питания. Выбор определяется исходя из задач, квалификации мастера и наличия комплектующих.

Импульсный БП на tl494

Микросхема TL494 является культовой в сфере построения импульсных источников питания. Большинство БП стационарных компьютеров сделано на ее основе.


Распиновка и назначение выводов TL494.

На базе TL494 можно сделать и лабораторный источник в соответствии с рассмотренной выше структурой.


Схема импульсного БП на TL494.

На входе блока установлен сетевой фильтр. После него расположен высоковольтный выпрямитель на VDS1 (можно применять любые сборки и диоды на соответствующее напряжение и то), формирующий постоянное напряжение 220 вольт. Параллельно выпрямителю включен вспомогательный трансформатор TR3 с выпрямителем VDS2. Эти элементы формируют напряжение +12 вольт для питания микросхем. TL494 генерирует последовательность импульсов, частота которых определяется цепочкой С3R3. Сигнал усиливается ключами на транзисторах T1, T2 и через трансформатор TR1 подается на базы T3, T4. Эти мощные транзисторы формируют высоковольтные импульсы в первичной обмотке трансформатора TR2. Импульсы с частотой следования несколько десятков килогерц трансформируются во вторичную обмотку трансформатора, выпрямляются сборкой D5, фильтруются и подаются к потребителю.

Цепь обратной связи по напряжению формируется на элементах OP3, OP4 операционного усилителя. Резистором R15 устанавливается необходимый выходной уровень. Фактический ток измеряется как падение напряжения на шунте из резисторов R25, R26. Элементы OP1, OP2 создают цепь ограничения наибольшего тока (необходимое значение устанавливается потенциометром). Микросхема TL494 в зависимости от заданного тока и напряжения увеличивает или уменьшает длительность открытого состояния ключей. Транзисторы T3, T4, а также диод D5 должны быть установлены на радиаторы. Крайне желательно организовать принудительный обдув элементов схемы. Вентилятор может быть подключен к источнику постоянного напряжения +12 вольт.

Номиналы и типы элементов приведены на схеме. Многие комплектующие, включая намоточные элементы, можно взять от неисправного или ненужного компьютерного БП. Дроссель L5 намотан на желтом тороидальном сердечнике и содержит 50 витков провода диаметром 1,5 мм.


Источник питания с импульсным стабилизатором.

Другой вариант применения микросхемы TL494 – в импульсном стабилизаторе для БП, выполненного по «трансформаторной» схеме. Этот источник выдает напряжение от 0 до 30 вольт при токе до 5 ампер.

Здесь микросхема управляет открытием и закрытием ключа на транзисторе VT1. В открытом состоянии энергия накапливается в дросселе L1, в закрытом – отдается из дросселя потребителю. Диод VD1 «съедает» импульс отрицательного напряжения, возникающий при коммутации цепи с большой индуктивностью.

Чем больше нагрузка, тем быстрее расходуется энергия в индуктивности, тем быстрее падает напряжение на конденсаторе C4, тем на большее время надо открывать транзистор. Напряжение обратной связи поступает на микросхему с движка потенциометра R9. Им устанавливается необходимый выходной уровень. Ток измеряется как падение напряжения на шунте R12. Необходимое значение уровня ограничения по току устанавливается с помощью R3.

Участок схемы, содержащий операционный усилитель LM358 и логическую микросхему К155ЛА3 (лучше применить К555ЛА3) служит для индикации режима БП – стабилизация тока или стабилизация напряжения.

Резисторы R4 и R10, предназначенные для точной подстройки напряжения и тока, можно не ставить – на практике от них пользы нет. При сборке надо обеспечить эффективное охлаждение элементов:

  • транзистора VT1;
  • диода VD1;
  • дросселя L1;
  • шунта R12.

Использование кулера крайне рекомендуется. Также следует установить приборы для индикации текущих значений тока и напряжения.

Рекомендуем попробовать: Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

На п210 транзисторе

В запасниках многих радиолюбителей сохранились транзисторы П210. Применение для них найти не так просто – появились более современные компоненты, их частотные характеристики и коэффициент усиления оставляют устаревший прибор далеко позади. Но один параметр — максимальный ток коллектора П210, составляющий 12 А при установке на радиаторе — позволяет и сегодня использовать их в регулируемых источниках питания.

Схема несложная, но надо обратить внимание, что транзистор включается в отрицательное плечо (П210 имеет структуру p-n-p). Конденсатор после выпрямителя должен иметь емкость не менее 5000 мкФ, а на выходе – не меньше 1000 мкФ. П210 может иметь малый коэффициент усиления, поэтому к нему добавлен транзистор VT2 – любой маломощный структуры p-n-p.


Схема источника питания на транзисторе П210 или аналогичном.

В источнике можно применить трансформатор ТН-36-127/220-50, имеющий 4 вторичные обмотки по 6,3 вольта. Соединив две из них последовательно, можно построить самодельный блок питания с выходным напряжением до 12 В, а если соединить по той же схеме 4 обмотки – до 24 В. Также можно использовать другие понижающие трансформаторы, подходящие по току и напряжению.

Схема соединения обмоток ТН-36-127/220-50.

Подобные источники регулируемого напряжения можно строить и на других транзисторах, включая n-p-n. В этом случае силовой элемент включается в положительное плечо БП.


Источник питания на транзисторе КТ829.

Эти простые БП не имеют защиты от КЗ и перегрузки. На выходе крайне желательно установить вольтметр и амперметр для контроля режима. Транзистор обязательно устанавливать на радиаторе.

На lm317

На микросхеме LM317 можно собрать блок питания с линейным стабилизатором напряжения и регулируемым ограничением по току. Основное достоинство этой микросхемы – простая схема включения с минимумом обвязки. Стандартная схема включения выглядит так:


Стандартная схема включения LM317.

Выходное напряжение задается делителем R1R2. Микросхема изменением выходного напряжения пытается удержать ток через делитель так, чтобы падение напряжения на R1 составляло 1,25 вольт. Поэтому, чем больше R2, тем больше выходное напряжение. Если вместо R2 поставить потенциометр, то выходное напряжение можно регулировать. Выходной уровень вычисляется по формуле Uвых=1,25*(1+R2/R1).

Если R2=0, то на выходе будет 1,25 вольта – это минимально возможное напряжение для данного включения.

В интернете существует много схем на LM317 с регулировкой напряжения от нуля вольт (в том числе с подачей на вывод Adjust отрицательного смещения). Большинство этих технических решений работоспособны только на бумаге.


В даташите на микросхему есть такая схема включения.

Этого достаточно, чтобы построить простой регулируемый лабораторник, но есть проблема. Микросхема в таком включении выдает не более 1,5 А, если ее даже установить на радиатор. Второй минус – чтобы получить выходное напряжение 30 В, на вход надо подать около 35 VDC. Если надо получить на выходе уровень, близкий к минимальному, вступают в действие ограничения по наибольшей рассеиваемой мощности – при перепаде 35/1,25 наибольший ток может быть 0,3..0,5 А (в зависимости от корпуса микросхемы). Это совсем мало. Поэтому микросхему надо умощнить внешним транзистором.


Производитель предлагает такую схему.

В качестве внешнего можно использовать отечественный транзистор структуры p-n-p КТ818 с буквенным индексом Б-Г (КТ818А может не пройти по напряжению коллектор-эмиттер). Если его установить на радиатор, наибольший ток в теории составит 10 А, но это в случае, если нет ограничений по току диодов выпрямителя и мощности трансформатора.

Мощные транзисторы структуры n-p-n более распространены. Если надо умощнить стабилизатор таким элементом, можно воспользоваться схемой из даташита.


Использование мощного n-p-n элемента, рекомендуемое разработчиком микросхемы.

Здесь применяется маломощный транзистор p-n-p (можно использовать отечественный КТ814), который управляет мощным элементом n-p-n (например, КТ819).

Часто применяемое на практике использование мощного n-p-n элемента.

Но чаще применяется включение, не предусмотренное разработчиком – транзистор включается базой к выходу микросхемы.

Каждая из предложенных схем может применяться в качестве лабораторного блока питания на LM317, но на практике популярностью пользуется схема ЛБП, дополненная регулировкой максимального тока.


Схема блока питания на LM317.

Питается устройство от сетевого трансформатора с двумя обмотками. Дополнительная обмотка служит для создания отрицательного плеча питания ОУ LM301, на котором собрана схема ограничения тока. Операционный усилитель включен по схеме компаратора – на одном выводе присутствует образцовое напряжение, регулируемое с помощью Р1, на другом – напряжение, создаваемое фактическим током на шунтовом резисторе R5.

Если реальный ток превышает установленный, состояние на выходе компаратора изменяется на противоположное. Загорается светодиод, напряжение ограничивается на уровне, поддерживающем установленное значение тока.

На базе этой схемы собран стационарный блок питания, обеспечивающий два канала напряжения с регулировкой 1,25..30 вольт и ограничением тока в пределах 5А на каждый канал.


Внешний вид БП.

При необходимости каналы могут быть соединены последовательно с общей точкой – получится двухполярный источник. 90+ процентов комплектующих и материалов, включая корпус, обычно можно найти в запасниках любого радиолюбителя.


Внутренняя компоновка источника питания.

Блок собран в корпусе от неисправного измерителя АЧХ «Тест». Применены силовые трансформаторы неизвестного происхождения, подходящие по мощности и напряжению (у одного пришлось перемотать вторичную обмотку для получения напряжения 35 вольт). На нем не хватило места для дополнительной обмотки, поэтому отрицательное плечо одного из каналов запитывается от отдельного маленького трансформатора.


Печатная плата стабилизатора.

Большинство элементов размещены на платах, рисунок и расположение деталей можно найти в интернете. Можно разработать и изготовить свою плату.


Рекомендуемый рисунок печатной платы и расположение элементов на ней.

Изменена схема измерения – применены блоки вольтметр-амперметр, которые можно купить на торговых площадках в интернете. Элементы R8, R9, P4 и аналоговый вольтметр в этом варианте устанавливать не надо. Выходные транзисторы установлены на радиаторах, имеющихся на задней стенке корпуса. Диоды выпрямителя установлены на самодельные радиаторы.

Отечественным аналогом LM317 является микросхема 142ЕН12А.

При наладке БП был нагружен автомобильными лампочками до тока в 5 А, подстроечным резистором P1 (при максимальном сопротивлении Р2) выставлено срабатывание защиты.

Схема показала себя работоспособной, хотя ограничение тока работает не по лучшему алгоритму. При выходе тока за пределы напряжение просто снижается до минимума. Лучше найти схему, которая в этом случае переводит БП в режим стабилизации тока. Если нужен более высоковольтный ЛБП (с выходным уровнем до 60 вольт), его можно сделать на микросхеме LM317HV и применить трансформаторы с соответствующим напряжением.

На lt1083

Вместо микросхемы LM317 можно применить LT1083. Ее специфические отличия:

  • низкое падение напряжения (при максимальном токе не более 1,5 В);
  • повышенный выходной ток.

Первое преимущество ведет к тому, что на микросхеме будет рассеиваться меньшая мощность, поэтому при малых значениях напряжения с нее можно снять повышенный ток. К тому же выходное напряжение трансформатора можно сделать более низким (ненамного, на 1..2 вольта, но иногда и это критично).

Второй плюс ведет к тому, что во многих случаях можно обойтись без внешнего мощного транзистора. Наибольший ток, отдаваемый стабилизаторами серии LT108X, приведен в таблице.

МикросхемаМаксимальный ток, А
LT10833
LT10845
LT10857,5

Ток в 7,5 ампер закрывает 90+ процентов нужд домашней лаборатории. В остальном по теме обзора схема не отличается от схемы на LM317.

Распиновка и типовая схема включения линейных стабилизаторов серии LT108X.

Статья в тему: Схемы компьютерных блоков питания — полное описание с примерами

Зарядное на LM317, усиленное транзистором с защитой от КЗ и переполюсовки

На одной из страниц мастерской, я описывал простенькое зарядное устройство на LM317 и хочу его немного совершенствовать. Данное зарядное устройство должно заряжать 3 LI-Ion аккумулятора напряжением до 12,6В, должно уметь держать ток в заданных параметрах, а так же уметь защищать зарядку от коротких замыканий и переполюсовки. По началу я хотел немного доделать зарядку, но в наличии LM на 1,5А не было и пришлось ставить LM317LZ на 100мА, что кардинально изменило всю схему.

Схема зарядного устройства на LM317LZ усиленная транзистором и с защитой от КЗ и переполюсовки

Основной блок собран на LM317LZ усиленный PNP транзистором типа КТ835. Когда через R3 проходит ток порядка 10 мА, отрывается транзистор Q1 и основной ток течет через него. Резисторами R5R8R10 выставляется напряжение 12,6В.

На транзисторном каскаде на Q4Q5 собрано ограничение тока. Когда падение на R13 доходит до 0,6В Q5 открывается и открывает Q4 шунтируя управляющую ножку LM317LZ. Ток рассчитать можно по формуле R13=0,6/Iнаг. Ток кстати может быть абсолютно любой, хоть на 20А. Все зависит от усиливающего транзистора и диодного моста

На полевике Q3 собрана защита от короткого замыкания и защита от переполюсовки, индикация на LED1. Кстати транзисторы использовал Q1-КТ835 Q2-C945 Q3-IRF630 Q4-S9012 Q5-C945

Собрал зарядное, оно заработало сразу. Единственное что не продумал индикацию окончания зарядки, но это в следующий раз.

Фото собранного зарядного устройства на LM317LZ

Печатная плата зарядного устройства на LM317, усиленное транзистором с защитой от КЗ и переполюсовки

Скачать печатную плату Пароль от архива jhg561bvlkm556

Видео зарядного устройства на LM317LZ

Что бы не пропустить последние обновления в мастерской, подписывайтесь на обновления в Вконтакте или Одноклассниках, так же можно подписаться на обновления по электронной почте в колонке справа

Не хочется вникать в рутины радиоэлектроники? Рекомендую обратить внимание на предложения наших китайских друзей. За вполне приемлемую цену можно приобрести довольно таки качественные зарядные устройства


Зарядное устройство 12В 1.3А

Простенькое зарядное устройство с светодиодным индикатором зарядки, зеленый батарея заряжается, красный батарея заряжена.

Есть защита от короткого замыкания, есть защита от переполюсовки. Отлично подойдет для зарядки Мото АКБ емкостью до 20Ач, АКБ 9Ач зарядит за 7 часов, 20Ач — за 16 часов. Цена на это зарядное всего 403 рубля,доставка бесплатна

Этот тип зарядного способен автоматически заряжать практически любые типы автомобильных и мото аккумуляторов 12В до 80АЧ. Имеет уникальный способ зарядки в три этапа: 1. Зарядка постоянным током, 2. Зарядка постоянным напряжением, 3. Капельная дозарядка до 100%. На передней панеле два индикатора, первый указывает напряжение и процент зарядки, второй указывает ток зарядки. Довольно качественный прибор для домашних нужд, цена всего 781,96 руб, доставка бесплатна. На момент написания этих строк количество заказов 1392, оценка 4,8 из 5. При заказе не забудьте указать Евровилку

Зарядное устройство для самых разнообразных типов аккумуляторов 12-24В с током до 10А и пиковым током 12А. Умеет заряжать Гелиевые АКБ и САСА. Технология зарядки как и у предыдущего в три этапа. Зарядное устройство способно заряжать как в автоматическом режиме, так и в ручном. На панеле есть ЖК индикатор указывающий напряжение, ток заряда и процент зарядки.

Принцип работы

Каким же образом работает наш стабилизатор сетевого напряжения, который легко делается своими руками?

После того, как включается питание конденсатор С1 находится в разряженном состоянии, транзистор VT2 открыт, а VT2 является закрытым. Также закрытым является транзистор VT3. Именно через него будет подаваться ток на каждый светодиод и симисторный оптотрон.

Поскольку этот транзистор является закрытым, светодиоды не светятся, каждый симистор является закрытым и нагрузка отключена. В это время электрический ток проходит через резистор R1 и попадает в С1. Далее происходит зарядка этого конденсатора.

Интервал задержки длится всего лишь три секунды. За это время осуществляются все переходные процессы, и после окончания происходит срабатывание триггера Шмитта, основу которого составляют транзисторы VT1 и VT2.

Далее открывается третий транзистор и включается нагрузка.

Напряжение, которое выходит с третьей обмотки Т1, выпрямляется диодом VD2 и конденсатором С2. Далее ток проходит через делитель R13…14. Из R14 напряжение, уровень которого является пропорциональным количеству вольт в сети, входит в каждый неинвертирующий вход компараторов.

Количество компараторов равняется восьми и все они находятся на микросхемах DA2 и DA3. В этот же момент на инвертирующий вход каждого компаратора входит постоянный образцовый ток. Его подают резисторные делители R15…23.

После этого в игру вступает контроллер, который осуществляет обработку сигнала на входе у каждого компаратора.

  • https://electricadom.com/stabilizator-napryazheniya-kak-vse-sdelat-svoimi-rukami-video.html
  • https://amperof.ru/sovety-elektrika/sxema-stabilizatora-napryazheniya-220v.html
  • https://lifehacker.ru/how-to-make-steadycam/
  • https://ostabilizatore.ru/shema-stabilizatora-naprjazhenija-220v-svoimi-rukami.html
  • https://fb.ru/article/360616/shema-stabilizatora-napryajeniya-v-svoimi-rukami-dlya-doma
  • https://generatorvolt.ru/ehlektrogenerator/kak-sobrat-stabilizator-napryazheniya-svoimi-rukami.html

Принцип действия

Рассмотрим, как функционирует стабилизатор напряжения, выполненный своими руками.

После подключения питания емкость С1 находится в состоянии разряда, транзистор VТ1 открытый, а VТ2 закрытый. VТ3 транзистор также остается закрытым. Через него поступает ток на все светодиоды и оптитрон на основе симисторов.

Так как этот транзистор пребывает в закрытом состоянии, то светодиоды не горят, а каждый симистор закрыт, нагрузка выключена. В этот момент ток поступает через сопротивление R1 и приходит на С1. Дальше конденсатор начинает заряжаться.

Диапазон выдержки идет три секунды. За этот период производятся все процессы перехода. После их окончания срабатывает триггер Шмитта на основе транзисторов VТ1 и VТ2. После этого открывается 3-й транзистор и подключается нагрузка.

Напряжение, выходящее с 3-й обмотки Т1, выравнивается диодом VD2 и емкостью С2. Далее ток поступает на делитель на сопротивлениях R13-14. Из сопротивления R14, напряжение, величина которого прямо зависит от величины напряжения, включена в каждый неинвертирующий компараторный вход.

Число компараторов становится равным 8. Они все выполнены на микросхемах DА2 и DА3. В то же время на инвертируемый вход компараторов подходит постоянный ток, подающийся с помощью делителей R15-23. Дальше вступает в действие контроллер, осуществляющий прием входного сигнала каждого компаратора.

Этапы изготовления

Чтобы собрать стабилизатор напряжения 220В для дома своими руками сначала нужно подготовить печатную плату размером 115х90 мм. Она изготавливается из фольгированного стеклотекстолита. Схема размещения деталей может быть напечатана на лазерном принтере и при помощи утюга перенесена на плату.

Смотрим видео, самодельный несложный прибор:

схема электрическая принципиальная

Далее переходим к сборке трансформаторов. Для одного такого элемента потребуется:

  • магнитопровод площадью сечения 1,87 см²;
  • три кабеля ПЭВ-2.

Первый провод используется для создания одной обмотки, при этом его диаметр составляет 0,064 мм. Число витков должно равняться 8669.

Два оставшихся провода потребуются для выполнения других обмоток. Они отличаются от первого диаметром, составляющим 0,185 мм. Количество витков для этих обмоток будет равно 522.

Если хотите упростить себе задачу, то можно воспользоваться двумя готовыми трансформаторами ТПК-2-2 12В. Их соединяют последовательно.

В случае изготовления этих деталей самостоятельно после того как будет готов один из них переходят к созданию второго. Для него будет нужен тороидальный магнитопровод. Для обмотки выбирают тот же ПЭВ-2, что и в первом случае, только количество витков составит 455.

Также во втором трансформаторе придется выполнить 7 отводов. Причем для первых трех используется провод диаметром 3мм, а для остальных – шины, сечением 18 мм². Это поможет избежать нагревания трансформатора в процессе работы.

соединение двух трансформаторов

Все остальные комплектующие для прибора, создаваемого своими руками лучше приобретать в магазине. После того, как все необходимое закуплено можно приступать к сборке. Начинать лучше всего с установки микросхемы, выполняющей роль контроллера на теплоотвод, который изготавливается из алюминиевой платины площадью более 15 см². На него также монтируются симисторы. Причем теплоотвод, на который предполагается их установка должен иметь охлаждающую поверхность.

Далее необходимо установить на плату светодиоды. Причем лучше выбирать мигающие. Если не получается расположить их согласно схеме, то можно разместить на стороне, где находятся печатные проводники.

Если сборка симисторного стабилизатора напряжения 220В своими руками для вас кажется сложной, то можно остановиться на более простой линейной модели. Она будет обладать аналогичными свойствами.

Эффективность изделия, выполненного своими руками

Что толкает человека на изготовление того или иного прибора? Чаще всего – его высокая стоимость. И в этом смысле стабилизатор напряжения, собранный своими руками, конечно, превосходит фабричную модель.

Кроме того, все детали для такого прибора предварительно покупались в магазине, поэтому в случае выхода их из строя всегда можно будет найти аналогичную.

Если же сравнивать надежность стабилизатора, собранного своими руками и произведенного на предприятии, то здесь преимущество на стороне заводских моделей. В домашних условиях разработать модель, отличающуюся высокой производительностью практически невозможно, так как нет специального измерительного оборудования.

Заключение

Существуют различные типы стабилизаторов напряжения, причем некоторые из них вполне реально сделать своими руками. Но для этого придется разобраться в нюансах работы оборудования, приобрести необходимые комплектующие и выполнить их грамотный монтаж. Если вы не уверены в своих силах, то лучший вариант – приобретение устройства заводского изготовления. Стоит такой стабилизатор дороже, но и по качеству значительно превосходит модели, собираемые самостоятельно.

Что нужно для подключения

Помимо самого стабилизатора, вам понадобится ряд дополнительных материалов:

трехжильный кабель ВВГнГ-Ls

Сечение провода должно быть точно таким же, как и на вашем вводном кабеле, который приходит на рубильник или автомат главного ввода. Так как через него будет идти вся нагрузка дома.

выключатель трехпозиционный

Данный выключатель в отличие от простых, имеет три состояния:

123

Можно использовать и обычный модульный автомат, но при такой схеме, если понадобится отключиться от стабилизатора, придется каждый раз полностью обесточивать весь дом и перекидывать провода.

Есть конечно же режим байпас или транзит, но чтобы перейти на него, нужно соблюдать строгую последовательность. Подробнее об этом будет сказано ниже.

С данным переключателем, вы одним движением целиком отсекаете агрегат, а дом остается со светом напрямую.

провод ПУГВ разных цветов

Вы должны четко понимать, что стабилизатор напряжения устанавливается строго до электросчетчика, а не после него.

Ни одна энергоснабжающая организация вам не разрешит подключиться по другому, как бы вы не доказывали, что тем самым, кроме эл.оборудования в доме, вы хотите защитить и сам прибор учета.

Стабилизатор имеет свой холостой ход и также потребляет эл.энергию, даже работая без нагрузки (до 30Вт/ч и выше). И эта энергия должна быть учтена и подсчитана.

Второй важный момент – крайне желательно, чтобы в схеме до места подключения прибора стабилизации было либо УЗО, либо дифф.автомат.

Это рекомендуют все производители популярных марок Ресанта, Sven, Лидер, Штиль и т.п

Это может быть вводной дифф.автомат на весь дом, не важно. Главное, чтобы само оборудование было защищено от утечек тока

А пробой обмоток трансформатора на корпус, не такая уж и редкая вещь.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]