Организация смещения выходного каскада усилителя мощности


СХЕМОТЕХНИКА ВЫХОДНЫХ КАСКАДОВ УСИЛИТЕЛЕЙ МОЩНОСТИ

Выходные каскады на базе » двоек «

В качестве источника сигнала будем использовать генератор переменного тока с перестраиваемым выходным сопротивлением ( от 100 Ом до 10,1 кОм ) с шагом 2 кОм ( рис . 3 ). Таким образом, при испытаниях ВК при максимальном выходном сопротивлении генератора (10,1 кОм ) мы в какой — то степени приблизим режим работы испытуемых ВК к схеме с разомкнутой ООС , а в другом (100 Ом ) — к схеме с замкнутой ООС .

Основные типы составных биполярных транзисторов ( БТ ) показаны на рис . 4. Наиболее часто в ВК используется со ставной транзистор Дарлингтона ( рис . 4 а ) на базе двух транзисторов одной проводимости (» двойка » Дарлингтона ), реже — составной транзистор Шиклаи ( рис . 4б ) из двух транзисторов разной проводимости с токовой отрицательной ОС , и еще реже — составной транзистор Брайстона ( Bryston , рис . 4 в ). » Алмазный » транзистор — разновидность составного транзистора Шиклаи — показан на рис . 4 г . В отличие от транзистора Шиклаи , в этом транзисторе благодаря » токовому зеркалу » ток коллекторов обоих транзисторов VT 2 и VT 3 практически одинаков . Иногда транзистор Шиклаи используют с коэффициентом передачи больше 1 ( рис . 4 д ). В этом случае K П =1+ R 2/ R 1. Аналогичные схемы можно получить и на полевых транзисторах ( ПТ ).

1.1. Выходные каскады на базе » двоек «. » Двойка » — это двухтактный выходной каскад с транзисторами , включенными по схеме Дарлингтона , Шиклаи или их комбинации ( квазикомлементарный каскад , Bryston и др .). Типовой двухтактный выходной каскад на » двойке » Дарлингтона показан на рис . 5. Если эмиттерные резисторы R3, R4 ( рис . 10) входных транзисторов VT 1, VT 2 подключить к противоположным шинам питания , то эти транзисторы будут работать без отсечки тока , т . е . в режиме класса А .

Посмотрим , что даст спаривание выходных транзисторов для двойки » Дарлингт она ( рис . 13).

На рис . 15 приведена схема ВК , использованная в одном из професс и ональных усилителей .

Менее популярна в ВК схема Шиклаи ( рис . 18) . На первых порах развития схемотехники транзисторных УМЗЧ были популярны квазикомплементарные выходные каскады , когда верхнее плечо выполнялось по схеме Дарлингтона , а нижнее — по схеме Шиклаи . Однако в первоначальной версии входное сопротивление плеч ВК несимметрично , что приводит к дополнительным искажениям . Модифицированный вариант такого ВК с диодом Баксандалла , в качестве которого использован базо — эмиттерный переход транзистора VT 3, показан на рис . 20.

Кроме рассмотренных » двоек «, есть модификация ВК Bryston , в которой входные транзисторы эмиттерным током управляют транзисторами одной проводимости , а коллекторным током — транзисторами другой проводимости ( рис . 22). Аналогичный каскад может быть реализован и на полевых транзисторах , например , Lateral MOSFET ( рис . 24) .

Гибридный выходной каскад по схеме Шиклаи с полевыми транзисторами в качестве выходных показан на рис. 28 . Рассмотрим схему параллельного усилителя на полевых транзисторах ( рис . 30).

В качестве эффективного способа повышения и стабилизации входного сопротивления » двойки » предлагается использовать на ее входе буфер , например , эмиттерный повторитель с генератором тока в цепи эмиттера ( рис . 32 ).

Из рассмотренных » двоек » наихудшим по девиации фазы и полосе пропускания оказался ВК Шиклаи . Посмотрим , что может дать для такого каскада применение буфера . Если вместо одного буфера использовать два на транзисторах разной проводимости , включенных параллельно ( рис . 35) , то можно ожидать дальнейшего улучшения пара метров и повышения входного сопротивления . Из всех рассмотренных двухкаскадных схем наилучшим образом по нелинейным искажениям показала себя схема Шиклаи с полевыми транзисторами . Посмотрим , что даст установка параллельного буфера на ее входе ( рис . 37 ).

Параметры исследованных вы ходных каскадов сведены в табл . 1 .

Анализ таблицы позволяет сделать следующие выводы : — любой ВК из » двоек » на БТ как нагрузка УН плохо подходит для работы в УМЗЧ высокой верности ; — характеристики ВК с ПТ на вы ходе мало зависят от сопротивления источника сигнала ; — буферный каскад на входе любой из » двоек » на БТ повышает входное сопротивление , снижает индуктивную составляющую выхода , расширяет полосу пропускания и делает параметры независимыми от выходного сопротивления источника сигнала ; — ВК Шиклаи с ПТ на выходе и параллельным буфером на входе ( рис . 37 ) имеет самые высокие характеристики ( минимальные искажения , максимальную полосу пропускания , нулевую девиацию фазы в звуковом диапазоне ).

Выходные каскады на базе » троек «

В высококачественных УМЗЧ чаще используются трехкаскадные структуры : » тройки » Дарлингтона , Шиклаи с выходными транзисторами Дарлинг тона , Шиклаи с выходными транзис торами Bryston и другие комбинации . Одним из самых популярных вы ходных каскадов в настоящее вре мя является ВК на базе составно го транзис тора Дарлингтона из трех транзисторов ( рис . 39). На рис . 41 показан ВК с разветвлением каскадов : входные повторители одновременно работают на два каскада , которые , в свою очередь , также работают на два каскада каждый , а третья ступень включена на общий выход . В результате , на выходе такого ВК работают счетверенные транзисторы .

Схема ВК , в которой в качестве выходных транзисторов использованы составные транзисторы Дарлингтона , изображена на рис . 43. Параметры ВК на рис .43 можно существенно улучшить , если включить на его входе хорошо зарекомендовавший себя с » двойками » параллельный буферный каскад ( рис . 44).

Вариант ВК Шиклаи по схеме на рис . 4 г с применением составных транзисторов Bryston показан на рис . 46 . На рис . 48 показан вариан т ВК на транзисторах Шиклаи ( рис .4 д ) с коэффициентом передачи около 5, в котором входные транзисторы работают в классе А ( цепи термоста билизации не показаны ).

На рис . 51 показан ВК по структуре предыдущей схемы только с единичным коэффициентом передачи . Обзор будет неполным , если не остановиться на схеме выходного каскада с коррекцией нелинейности Хауксфорда ( Hawksford ), приведенной на рис . 53 . Транзисторы VT 5 и VT 6 — составные транзисторы Дарлингтона .

С целью устранения отмеченных выше недостатков схемы рис. 54 и упрощения схемы заменим входной эмиттерный повторитель параллельным повторителем , а резисторы R 1 ( рис . 53) разобьем на 2 резистора ( рис . 55). В точки соединения резисторов ( R 5, R 8 и R 6, R 9) подключим генераторы тока (9 мА ) н а транзисторах VT 1, VT 4. и получим схему изображенную на рисунке .

Заменим выходные транзисторы на полевые транзисторы типа Lateral ( рис . 57

По вышению надежности усилите лей за счет исключения сквозных то ков , которые особенно опасны при кли пировании высокочастотных сиг налов , способствуют схемы антинасыщения выходных транзисторов . Варианты таких решений показаны на рис . 58. Через верхние диоды происходит сброс лишнего тока базы в коллектор транзистора при прибли жении к напряжению насы щен ия . На пряжение насыщения мощных транзисторов обычно находится в пределах 0,5…1,5 В , что примерно совпадает с падением напряжения на базо-эмиттерном переходе . В первом варианте ( рис . 58 а ) за счет дополнительного диода в цепи базы напряжение эмитте р — коллектор не доходит до напряжения насыщения пример но на 0,6 В ( падение напряжения на диоде ). Вторая схема ( рис . 58б) требует подбора резисторов R 1 и R 2. Нижние диоды в схемах предназначены для быстрого выключения транзисторов при импульсных сигналах . Аналогичные решения применяются и в силовых ключах .

Часто для повышения качества в УМЗЧ делают раздельное питание, повышенное , на 10…15 В для входного каскада и усилителя на пряжения и пониженное для вы ходного каскада . В этом случае во избежание выхода из строя выходных транзисторов и снижения перегрузки предвыходных необходимо использовать защитные диоды . Рассмотрим этот вариант на примере модификации схемы на рис . 39. В случае повышения входного напряжения выше на пряжения питания выходных транзисторов открываются дополнительные диоды VD 1, VD 2 ( рис . 59 ), и лишний ток базы транзисторов VT 1, VT 2 сбрасывается на шины питания оконечных транзисторов . При этом не допускается повышения входного на пряжения выше уровней питания для выходной ступени ВК и снижается ток коллектора транзисторов VT 1, VT 2.

Схемы смещения

Ранее , с целью упрощения , вместо схемы смещения в УМЗЧ использовался отдельный источник напряжения . Многие из рассмотренных схем , в частности , выходные каскады с параллельным повторителем на входе , не нуждаются в схемах смещения , что является их дополнительным достоинством . Теперь рассмотрим типовые схе мы смещения , которые представлены на рис . 60 , 61 .

Генераторы стабильного тока. В современных УМЗЧ широко используется ряд типовых схем : диф ференциальный каскад ( ДК ), отражатель тока (» токовое зеркало «), схема сдвига уровня , каскод ( с последова тельным и параллельным питанием , последний также называют » лома ным каскодом «), генератор стабильного тока ( ГСТ ) и др . Их правильное применение позволяет значительно повысить технические характеристики УМЗЧ . Оценку параметров основных схем ГСТ ( рис. 62 — 6 6 ) сделаем с помощью моделирования . Будем исходить из того , что ГСТ является нагрузкой УН и включенпараллельно ВК . Исследуем его свойства с помощью методики , аналогичной исследованиям ВК .

Отражатели тока

Рассмотренные схемы ГСТ — , это вариант динамической нагрузки для однотактного УН . В УМЗЧ с одним дифференциальным каскадом ( ДК ) для организации встречной динамической нагрузки в УН используют структуру » токового зеркала » или , как его еще называют , » отражателя тока » ( ОТ ). Эта структура УМЗЧ была характерна для усилителей Холтона , Хафлера и др . Основные схемы отражателей тока приведены на рис . 67 . Они могут быть как с единичным коэффициентом передачи ( точнее , близким к 1), так и с большим или меньшим единицы ( масштабные отражатели тока ). В усилителе напряжения ток ОТ находится в пределах 3…20 мА : Поэтому испытаем все ОТ при токе , например , около 10 мА по схеме рис . 68.

Результаты испытаний приве дены в табл . 3 .

В качестве примера реального усилителя предлагается схема усилителя мощности S. BOCK , опубликованная в журнале Радиомир, 201 1 , № 1, с. 5 — 7; № 2, с. 5 — 7 Radiotechnika №№ 11, 12/06

Целью автора было построение усилителя мощности , пригодного как для озвучивания » пространства » во время прадничных мероприятий , так и для дискотек . Конечно , хотелось , чтобы он умещался в корпусе сравнительно небольших габаритов и легко транспортировался . Еще одно требование к нему — легкодоступность комплектующих . Стремясь достичь качества Hi — Fi , я выбрал комплементарно — симметричную схему выходного каскада . Максимальная выходная мощность усилителя была задана на уровне 300 Вт ( на нагрузке 4 Ом ). При таком мощности выходное напряжение составляет примерно 35 В . Следовательно для УМЗЧ необходимо двухполярное питающее напряжение в пределах 2×60 В . Схема усилителя приведена на рис . 1 . УМЗЧ имеет асимметричный вход . Входной каскад образуют два дифференциальных усилителя .

А. ПЕТРОВ , Радиомир, 201 1 , №№ 4 — 12
Адрес администрации сайта

▍ Особенности работы двухтактных схем

Применение двухтактных схем с режимом работы AB даёт значительный прирост выходной мощности при повышении коэффициента полезного действия. Двухтактные схемы имеют меньший по сравнению с однотактными коэффициент нелинейных искажений за счёт лучшего подавления чётных гармоник.
Качество выходного сигнала двухтактных схем с режимом работы AB обеспечивается симметричностью: лампы выходного каскада должны подбираться парами по идентичности характеристик; половины первичной обмотки должны иметь идентичные амплитудно-частотные и фазовые характеристики во всём диапазоне рабочих частот усилителя; каскад фазоинвертора должен обеспечивать точность сдвига фаз во всём амплитудно-частотном диапазоне усилителя.

▍ Особенности работы однотактных схем

Однотактные схемы работают только в режиме A и имеют по сравнению с двухтактными схемами на тех же лампах меньшую выходную мощность при меньшем коэффициенте полезного действия. Спектр выходного сигнала однотактной схемы содержит, помимо прочих, практически равные по уровню, вторую и третью гармоники.
Однотактные схемы не требуют подбора ламп. Конструкция трансформатора для применения в однотактных каскадах гораздо проще. За счёт работы лампы в режиме A магнитопровод выходного трансформатора постоянно подмагничен, что значительно ухудшает его линейность.

Рейтинг
( 2 оценки, среднее 4 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]