Предыдущей статье я рассказал о изготовлениии простого намоточного станочка. Пришло время показать изготовленные трансформаторы для ламповой техники. Первым был выходной трансформатор для гитарного комбоусилителя JCM800. Попалось хорошее железо 0,35 мм на развале. Хорошее сечение 12,5 см.кв. Мотать стал на своём станке. Особо не спешил, за 2-3 часа одна обмотка в день. Каждый слой при помощи строительного фена и свечи пропитывал воском, чтобы потом не варить в парафине весь трансформатор.
Какую схему питания УНЧ выбрать?
Для питания микросхемы, я решил использовать двухполярное питание.
При двухполярном питании не требуется бороться с фоном и щелчками при включении. Кроме того, отпадает необходимость в разделительных конденсаторах на выходе усилителя.
Ну, и самое главное, микросхемы, рассчитанные на однополярное питание и имеющие соизмеримый уровень искажений, в несколько раз дороже.
Это схема блока питания. В нём применён двухполярный двухполупериодный выпрямитель, которому требуются трансформатор с двумя совершенно одинаковыми обмотками «III» и «IV» соединёнными последовательно. Далее все основные расчёты будут вестись только для одной из этих обмоток.
Обмотка «II» предназначена для питания электронных регуляторов громкости, тембра и стереобазы, собранных на микросхеме TDA1524. Думаю описать темброблок в одной из будущих статей.
Ток, протекающий через обмотку «II» будет крайне мал, так как микросхема TDA1524 при напряжении питания 8,5 Вольта потребляет ток всего 35мА. Так что потребление здесь ожидается менее одного Ватта и на общей картине сильно не отразится.
Вернуться наверх к меню
Направление витков
Я с трудом нашел информацию про направление витков обмотки, — для этого пришлось освежить школьный курс физики (правило буравчика и т.п.). Хотя этот вопрос неизбежно возникает у новичка.
Главное правило — направление витков обмотки не имеет значения
… до тех пор пока возникает необходимость соединять обмотки друг с другом (последовательно или параллельно), либо в случае применения трансформатора в каких-нибудь устройствах, где важна фаза сигнала.
Не важно в каком направлении наматывать витки — важно как потом соединяются обмотки
Последовательное соединение обмоток
При последовательном соединении обмоток трансформатора, нужно мысленно представить, что одна обмотка является продолжением другой, а точка их соединения — это разрыв единой обмотки
, в которой
направление вращения
витков вокруг сердечника сохраняется неизменным (и конечно не может разворачиваться в обратную сторону!).
При этом любой вывод обмотки может быть началом или концом, а само направление вращения может быть любым. Главное, чтобы это направление оставалось одинаковым у соединяемых обмоток.
При этом, движение соединяемых обмоток сверху вниз катушки или снизу вверх не имеет значения (см. рисунок — увеличивается кликом мыши).
В трансформаторах, у которых сердечник имеет форму буквы «О», и катушки намотаны на двух каркасах справа и слева, действует те же правила. Но для простоты понимания можно мысленно «разорвать» сердечник (сверху или снизу), и представить, что он выпрямляется в один стержень, — так легче будет понять, как одна обмотка переходит в другую с сохранением направления вращения витков (по или против часовой стрелки). См. рисунок ниже (рисунок увеличивается кликом мыши).
Параллельное соединение обмоток
При параллельном соединении важна длина провода в обмотках.
Даже при одинаковом количестве витков, разные обмотки могут иметь разную длину провода (та обмотка, которая ближе к середине — будет короче, а та что дальше — длиннее). В результате этого могут возникать перетоки
.
Если предполагается параллельное соединение обмоток, то лучше мотать их одновременно в два (три, четыре…) провода. Тогда они будут одинаковой длины, что максимально исключит перетоки при их дальнейшем параллельном соединении.
Намотку в несколько проводов также используют при отсутствии провода нужного сечения (набирают большое сечение несколькими проводами меньшего).
Проверка направления витков при помощи батарейки и мультиметра
Если есть трансформатор, в котором нужно соединить две обмотки последовательно, но направление витков не видно и не известно, можно подать импульс постоянного тока от батарейки на одну из обмоток, наблюдая за скачком напряжения на другой обмотке.
Когда скачок напряжения в момент подключения батарейки на мультиметре (на второй обмотке) будет в «+», то точками соединения обмоток будут любые «+» и «-» разных обмоток (например «+» мультиметра и «-» батарейки, или наоборот). Два других конца при этом будут выводами этих обмоток после соединения (см. рисунок — кликнуть мышью для увеличения).
Направление витков на разных катушках
Повторюсь — не важно направление намотки, важно подключение обмоток.
Хотя есть одно «но». Если говорить об удобстве, то на таком типе трансформатора (с сердечником в виде буквы «О» и двумя катушками), удобнее правую и левую катушку мотать одинаково (не зеркально, а одинаково). В этом случае удобнее будет ставить перемычки при последовательном соединении двух обмоток на разных катушках — перемычки будут с одной стороны, и не через весь каркас сверху вниз.
См. рисунок (для увеличения — кликнуть мышью на рисунке):
Сборка понижающего трансформатора
Понижающий трансформатор будет отличаться большим количеством витков на первичке. В быту их можно часто встретить в блоках питания, сварочных аппаратах и прочем оборудовании. Правда, в импульсных блоках используется другая технология, поэтому ремонт таких устройств производится без трансформаторов.
Так как изготовление сварочного трансформатора своими руками довольно актуально для домашних самоделок, рассмотрим на примере этот вариант. Требования к процессу сборки соответствует предыдущему. Отличительной особенностью такого агрегата является большое сечение провода во вторичной обмотке, так как сварочный ток может достигать сотен ампер.
Процесс изготовления заключается в следующем:
- Возьмите старое или изготовьте основание для катушки.
- Зафиксируйте на трансформаторном каркасе слой изоляции.
- Намотайте первичную обмотку с попеременной изоляцией слоев.
- Заизолируйте первичку и намотайте вторичную обмотку, так как большой диаметр проводов не позволит сделать это вручную, используйте слесарный инструмент.
- Зафиксируйте выводы обеих катушек.
- Установите пластины сердечника.
Ключевые отличия от силового
Трансформатор звуковой частоты отличается от привычного силового в первую очередь тем, что в нем присутствует устройство для пропуска диапазона звуковых частот. Широкополосные довольно трудны в просчетах, особенно если речь идет о полных сопротивлениях и при работе на большой мощности. Всегда присутствует постоянной ток на одной из обмоток. Проблемы со схематической частью вызваны трудностями в расчете из-за числа октав, с которыми работает устройство, а не диапазона.
Импульсный трансформатор для питания усилителя звуковых частот занимает меньше места, если сравнивать его с аналогом силовым с идентичными техническими показателями. К усилителю обязательно идет генератор, а к силовому трансформатору — только первичная обмотка к электрической сети, вторичная обмотка к диодам и различные конденсаторы.
Виды
Трансформатор звукового типа работает от сопротивления источника на сопротивление нагрузки. Это неоспоримая аксиома, вне зависимости от того, в какому типу относится тс — меж каскадному или выходному.
Устройство передачи звука подключается к первичной обмотке оборудования. У него есть сопротивление, вторичка подключена к нему. Принцип работы далее определяется типом трансформатора.
Межкаскадные
Эти устройства практически не выпускаются современными производителями. Дело в том, что принцип их работы основывается на передаче импульса между двумя сопротивлениями или импедансами. Это не удобно и приводит к потере коэффициента полезного действия.
Выходные
Выходного типа тс функционируют не от импедансов обоих, а от конкретного сопротивления источника. В зависимости от вариации оборудования это может быть тетрод или пентод, которые подключены к активному сопротивлению.
Как сделать своими руками
Особых сложностей и отличий в изготовлении согласующих трансформаторов нет. Технология сходна со сборкой понижающих устройств. Но необходимо соблюдать следующие рекомендации:
- Обмотки укладываются равномерно без повреждения изоляции.
- Пластины малогабаритных устройств не нуждаются в дополнительной изоляции, лакируют только детали наборных сердечников более мощных трансформаторов.
- При выборе типа сердечника необходимо обращать на технические характеристики трансформаторной стали или ферромагнитных колец.
Отметим, что самостоятельное изготовление устройств такого типа экономически нецелесообразно. Закупка отдельных комплектующих обойдется дороже. Согласующее устройство с требуемым коэффициентом трансформации по сопротивлению в заводском исполнении обойдется дешевле.
Исследование модифицируемого трансформатора
Трансформатор ТСА-30-1
оказался намотан алюминиевым проводом (буква «А» как раз означает алюминий).
Информации о нем в Интернет, к счастью, было достаточно, хотя реальность не совпала с найденным на него паспортом. По паспорту одна из обмоток должна была быть вроде бы как медной (провод ПЭВ-1, не имеет буквы «А» в названии как другие — ПЭВА), и я планировал ее не трогать, но в процессе работы оказалось, что эта обмотка тоже алюминиевая. Поэтому я ее тоже удалил. Т.е. осталась нетронутой только первичная обмотка.
Экран из алюминиевой фольги
В процессе разборки, я из любопытства отмотал немного пропарафиненной бумаги над первичной обмоткой хотел на нее посмотреть, и натолкнулся на один виток фольги, который присутствовал между первичной обмоткой и вторичной. Этот виток фольги шел внахлест вместе с бумагой, т.е. он не замыкался, и только один из концов был отрезком медного провода соединен точечной сваркой с корпусом. Такое разделение используют в качестве экрана от помех, хотя по поводу его эффективности идут споры. Трансформатор советский и экран был заложен на заводе изготовителе — я его трогать не стал.
Направление витков
Витки на трансформаторе были намотаны на разных катушках (левой и правой) абсолютно одинаково (не зеркально, а именно одинаково). В дальнейшем стало понятно, что такая намотка сделана исключительно для удобства при последующем последовательном соединении обмоток с разных катушек. Видимо, по той же причине направление разных вторичных обмоток чередуется. В этом случае перемычки между обмотками при последовательном соединении просто удобнее ставить с одной стороны.
Металлические клеммы
Клеммы этого трансформатора очень трудно паять и лудить, поскольку они судя по-всему сделаны не из меди. Медь, чем лучше ее прогреешь, тем лучше она паяется, а у стальных (?) клемм прогрев приводит к скатыванию припоя в шарик и его перетеканию с клеммы на жало паяльника. Нужно ловить один из начальных моментов прогрева, чтобы припой остался на клемме в приемлемом виде.
В исследуемом трансформаторе было тяжело вдвойне, т.к. к металлическим клеммам был припаян алюминий. Пришлось использовать для пайки ортофосфорную кислоту
с последующей промывкой водой и сушкой на радиаторе.
Первичная обмотка
В этом трансформаторе две катушки, и каждая обмотка разделена на две равные части, которые намотаны на каждую из двух катушек, с последовательным соединением. Считается, что так выше КПД — равномернее нагрузка.
Первичная обмотка состоит из двух по 110v на каждой катушке, соединенных последовательно перемычкой. Кроме того к каждой из обмоток последовательно присоединена небольшая добавочная обмотка, которую я отсоединил и использовал в своих целях (превратив таким образом во вторичную). Напряжение этой добавочной пары — около 36v (при 230v в сети).
Как определить необходимую мощность силового трансформатора для питания УНЧ?
Для колонок описанных здесь, я решил собрать простой усилитель мощностью 8-10 Ватт в канале, на самых дешёвых микросхемах, которые только удалось найти на местном радиорынке. Ими оказались – TDA2030 ценой всего по 0,38$.
Предполагаемая мощность в нагрузке должна составить 8-10 Ватт в канале:
10 * 2 = 20W
КПД микросхемы TDA2030 по даташиту (datasheet) – 65%.
20 / 0,65 = 31W
Я подобрал трансформатор с витым броневым магнитопроводом, так что, КПД можно принять равным – 90%.https://oldoctober.com/
31 / 0,9 = 34W
Приблизительно оценить КПД трансформатора можно по таблице.
Мощность трансформатора (Вт) | КПД трансформатора (%) | |||
Броневой штампованный | Броневой витой | Стержневой витой | Кольцевой | |
5-10 | 60 | 65 | 65 | 70 |
10-50 | 80 | 90 | 90 | 90 |
50-150 | 85 | 93 | 93 | 95 |
150-300 | 90 | 95 | 95 | 96 |
300-1000 | 95 | 96 | 96 | 96 |
Значит, понадобится сетевой трансформатор мощностью около 30-40 Ватт. Такой трансформатор должен весить около килограмма или чуть больше, что, на мой взгляд, прибавит моему мини усилителю устойчивости и он не будет «бегать» за шнурами.
Если мощность трансформатора больше требуемой, то это всегда хорошо. У более мощных трансформаторов выше КПД. Например, трансформатор мощностью 3-5 Ватт может иметь КПД всего 50%, в то время как у трансформаторов мощностью 50–100 Ватт КПД обычно около 90%.
Итак, с мощностью трансформатора вроде всё более или менее ясно.
Теперь нужно определиться с выходным напряжением трансформатора.
Вернуться наверх к меню
Техника безопасности
Тестирование на безопасность, использование, а также самостоятельная сборка оборудования требуют соблюдения определенных мер предосторожности.
Если собираются проводить ремонт, то оборудование обязательно отключат от сети. Нельзя, чтоб было напряжение. Для работы, в том числе и вводами, а не самой внутренней частью, специалисты надевает защитные очки. Для тестирования применяются специальные приборы. Помните, что устанавливать показатели, превышающие максимальный номинальный порог устройства в зависимости от расчетных характеристик небезопасно.
Намотка
Я наматывал одновременно четыре параллельных провода. В результате получил четыре обмотки на каждой катушке в каждом ряду. Такое количество обмоток дает возможность, соединяя их последовательно (или параллельно), комбинировать необходимое напряжение (и ток).
Для лабораторного блока питания, используемого как инструмент при работе, это наиболее удобный вариант.
ВАЖНО!
Для трансформатора имеющего сердечник в виде буквы «О», с двумя катушками справа и слева (такого, как рассматривается в этой статье), лучше всего каждую обмотку разделить на две (одинаковые), намотанные на разные катушки и соединенные последовательно. В этом случае будет выше КПД.
КСТАТИ
при укладке на каркас, желательно слегка выгибать провод наружу перед каждым загибом на углах, чтобы витки потом не отходили в стороны от каркаса, образуя зазор при котором ухудшается плотность намотки. Я дополнительно еще придавливал провод сосновым бруском после каждого загиба на каркасе.
Расчет длины провода.
Перед намоткой необходимо замерять ширину каркаса и ширину окна между каркасами катушек (или каркасом и сердечником). После этого необходимо рассчитать длину провода, и учесть его диаметр (с лаковой изоляцией!). Если намотка происходит без разборки сердечника, способом продевания провода в окно, то кусок/куски провода необходимой длины нужно будет «откусить» заранее, поэтому важно не ошибиться. Если провод достаточно тонкий (например менее ᴓ 0,5 мм) и длинный, то имеет смысл сделать тонкий челнок, на который намотать провод нужной длины — так его будет легче протаскивать в окно.
У меня здесь например внутренняя длина каркаса была 54 мм, и рассчитывая уложить 52 витка провода диаметром 1мм, я не угадал — последние пол витка мне пришлось делать частично внахлест (видимо я не учел толщину лаковой изоляции). См. рисунок (для увеличения — нажать мышью):
При расчете возможностей окна нужно учитывать суммарную толщину изоляционных прокладок из бумаги или лакоткани между обмотками.
Для точного расчета необходимой длины нужно сделать контрольный виток и замерять его длину. При этом, в каждом следующем ряду виток будет немного длиннее (скажется толщина нижнего ряда и толщина междурядной изоляционной прокладки). Надо понимать, что например при 50 витках ошибка длины в один миллиметр на виток даст погрешность 5 см на 50 витках. Также надо учесть запас на выводы (я добавлял к общей длине кусков по 10 см с каждой стороны, т.е. всего 20 см. — этого было достаточно и на выводы, и на возможную ошибку).