Очень большое распространение в последние годы получили закрытые акустические системы, которые до недавнего времени были единственным видом АС для высококачественного воспроизведения как в нашей стране, так и за рубежом. И только в последние годы АС с фазоинвертором (АС с ФИ) и АС с пассивным излучателем (АС с ПИ) нарушили монополию закрытых АС.
Тем не менее акустическое оформление закрытый ящик и в настоящее время является одной из наиболее распространенных конструкций высококачественных АС в Западной Европе и довольно широко выпускаются в США, как это было видно из таблицы (данные 1984 года):
Страна | Закрытые системы, % | АС с фазоинвертором, % | АС с пассивным излучателем, % | Другие системы, % |
США | 42,7 | 32,4 | 8,6 | 16,3 |
Страны Западной европы | 60,8 | 31,7 | 6,5 | 1,0 |
Япония | 27,9 | 62,3 | 9,8 | — |
На рис. 1 представлена типичная закрытая АС.
Активный сабвуфер Tannoy TS2.8 в акустическом оформлении закрытый ящик.
Преимущество закрытой АС заключается в том, что задняя поверхность диффузора головки не излучает и, таким образом, полностью отсутствует «акустическое короткое замыкание».
Недостатком закрытых АС является то, что диффузоры их головок нагружены дополнительной упругостью объема воздуха внутри оформления. Наличие дополнительной упругости приводит к повышению резонансной частоты подвижной системы головки в закрытом оформлении ω01 и, как следствие, к сужению снизу воспроизводимого диапазона частот. Значение дополнительной упругости объема воздуха SВ может быть найдено как:
SB=γp0S2эфф/V, (1)
где γ — показатель адиабаты, Sэфф — эффективная площадь диффузора головки, V — внутренний объем корпуса оформления.
Эффективной площадью диффузора считают 50–60 % его конструктивной площади. Для круглого диффузора диаметром d Sэфф=0,55S=0,44d2. Это эквивалентно тому, что эффективный диаметр диффузора составляет 0,8 от конструктивного диаметра. Упругость SВ суммируется с собственной упругостью подвеса подвижной системы головки S0 и в результате резонансная частота головки в закрытом оформлении вычисляется по формуле:
ω01=√((S0+SB)/m)=ω0√(1+SB/S0), (2)
где m — масса подвижной системы головки.
Как видно из формулы 1, упругость воздушного объема внутри оформления обратно пропорциональна этому объему. Упругость подвижной системы можно также выразить через упругость некоторого эквивалентного объема воздуха VЭ, имеющего упругость S0. Отсюда резонансная частота головки в закрытом оформлении:
ω01=ω0√(1+VЭ/V) (3)
Чтобы резонансная частота все же не была чрезмерно высокой, иногда применяют головки с более тяжелой подвижной системой, что дозволяет несколько снизить резонансную частоту головки в закрытом оформлении, как это видно из формулы 2. Однако следует иметь в виду, что увеличение массы подвижной системы снижает чувствительность акустической системы, как это видно из формулы для стандартного звукового давления:
где A — частотно-независимый множитель, Rr — выходное сопротивление усилителя (генератора), Rk — активное сопротивление звуковой катушки, а — эффективный радиус головки.
Особенно малой эффективностью обладают так называемые малогабаритные акустические системы (MAC), у которых упругость объема внутри оформления существенно больше упругости закрепления подвижной системы головки.
Такие системы, у которых упругость подвижной системы определяется упругостью объема воздуха внутри оформления, называются системами «с компрессионным подвесом» головки.
Стандартное звуковое давление рст такой системы на частотах ω>ω01, где рст частотно-независимо, определяется так:
рст=2,65*10-3√(f301V/Q01), (5)
где Q01 — добротность головки в закрытом оформлении (методику измерения можно найти в статье «Измерение параметров Тиля-Смолла в домашних условиях»).
Как следует из формулы (4), неравномерность частотной характеристики закрытых акустических систем в области низких частот так же, как и открытых, определяется из добротностью (рис. 2.).
Рис. 2. Частотная характеристика закрытой системы (АЧХ ЗЯ)
При Q01<0,707 частотная характеристика АС равномерно понижается с понижением частоты в область низких частот и неравномерность проявляется как спад на резонансной частоте ω01 по сравнению с высшими частотами. При 0,70701<1 частотная характеристика имеет небольшой пик на частоте ω1 и далее спад на резонансной частоте ω01. Неравномерность частотной характеристики при этом определяется подъемом на пике ω1, и спадом на резонансной частоте ω01. При Q01>1 неравномерность частотной характеристики определяется только ликом на частоте ω1 относительно горизонтальной части характеристики.
Неравномерность частотной характеристики в зависимости от добротности закрытой АС приведена на рис. 3.
Рис. 3. Зависимость неравномерности частотной характеристики закрытой акустической системы от Q01.
Как следует из рисунка, минимальная неравномерность частотной характеристики закрытых АС имеет место при добротности Q01=1 и составляет 1,3 дБ. Желательная же добротность самой головки находится из условия:
Q=Q01/√(1+Vэфф/V) (6)
Исследования показали, что добротность головок, предназначенных для закрытых АС, не должна превышать 0,8–1.
В противном случае головка получается «раздемпфированной». Это означает, что при ее возбуждении, т.е. при подаче на нее напряжения музыкальной или речевой программы, головка помимо колебаний в такт с поданным напряжением будет колебаться и с частотой собственных колебаний, близкой к резонансной частоте.
Для слушателей это будет проявляться в том, что к звучанию программы будет примешиваться звучание этой частоты как своего рода «гудение», «нечистота» низких тонов. Отметим также, что если головка помещена в закрытом ящике, ухудшается равномерность частотной характеристики в области средних и высоких частот из-за резонансных явлений в оформлении.
Для их устранения внутренние поверхности (особенно заднюю стенку) покрывают звукопоглощающим материалом и заполняют им часть объема. Кроме того, заполнением внутреннего объема рыхлым звукопоглощающим материалом преследуют и другую цель — изменить термодинамический процесс сжатия-расширения воздуха в оформлении.
Без заполнения процесс сжатия-расширения воздуха внутри оформления адиабатический. Заполняя оформление рыхлым звукопоглощающим материалом можно сделать так, чтобы адиабатический процесс сменился на изотермический.
В этом случае внутренний объем оформления как бы увеличивается в 1,4 раза, так как коэффициент γ в формуле (1), составляющий 1,4 для адиабаты, заменяется значением, равным единице для изотермы. Соответственно снижается и резонансная частота закрытой АС.
Это снижение в пределе (для компрессионной АС) достигает √1,4, так как для нее можно пренебречь упругостью подвеса головки. В противном случае резонансная частота головки ω01’ может быть найдена как:
ω01’= ω01√((1+0,75 *S/S0) ∙ (1+S/S0)), (7)
Примеры расчета закрытого ящика
Пример №1. Пусть, например используется динамик с параметрами f0=30 Гц, Q=0,4, Vэ=60 л. Находим предварительное А = 2,65*10-3√(303*100*10-3/0,4)=0,218.
Пусть требуется подобрать для этого динамика объем оформления V, при котором спад частотной характеристики должен составлять 6 Дб на граничной частоте АС fгр=40 Гц.
По рисунку 6 из точки ωrp/ω0 = 40*30=1,33 на горизонтальной оси восстанавливаем ординату до пересечения с кривой с отметкой 6 Дб и из этой точки проводим прямую параллельную оси абсцисс до пересечения с кривой V/Vэ. Получаем V/Vэ = 0,95.Отсюда V = 0,95 Vэ= 0,95*100=95 л. Этому значению V/Vэ по правой вертикальной оси значение √(1+V/Vэ)=1,4. Следовательно, pст = 2,18*1,4=0,305 Па. По графику на рисунке 5 находим соотношение ωrp/ω0=f01/f0=1,4. Отсюда f01 = 1,4f0=1,4*30=42 Гц.
Пример №2. Рассчитывать закрытый ящик можно не только по графикам, но и по приведенным формулам. Пусть, например, требуется рассчитать объем закрытого ящика АС с нижней граничной частотой 50Гц, имеющих головку 10ГД-36 (f0=38 Гц, Q=0,8, Vэ=60 л).
- Определяем объем оформления из формулы (3): V = 60/(50/38)2-1)= 83 л.
- Находим добротность динамика в закрытом ящике из формулы (6): Q01=0.8√(1+60/83) = 1.05
- В соответствие с рис. 3 минимальная неравномерность частотной характеристики имеет место при Q0=1. Так что полученная неравномерность частотной характеристики из-за пика на частоте ω1 практически минимальна и составляет всего около 1,5дБ.
Акустическое оформление с пассивным излучателем (ПИ). Расчет и настройка
Существует еще одна разновидность акустического оформления громкоговорителя, способная обеспечивать воспроизведение громкоговорителем низших частот при сравнительно небольших габаритах ящика. Она имеет несколько названий, из которых наиболее правильным являются: фазоинвертор с пассивным радиатором или ФИ с закрытым отверстием. Еще такое оформление называется пассивный излучатель (ПИ) или пассивный радиатор.
Особенность этого фазоинвертора состоит в том, что громкоговоритель размещается в ящике, имеющем вблизи места его установки отверстие, с закрепленной в нем подвижной системой второго громкоговорителя без магнитной системы и центрирующей шайбы. Диаметр диффузора пассивного радиатора приблизительно равен диаметру диффузора громкоговорителя. Отверстие в звуковой катушке заклеено и в этом месте, к диффузору прикреплен дополнительный груз. Масса груза зависит, главным образом, от объема ящика и резонансной частоты фазоинвертора.
Принцип действия с пассивным радиатором аналогичен принципу действия обычного фазоинвертора. На резонансной частоте закрытого ФИ диффузор пассивного радиатора колеблется синфазно с диффузором основного громкоговорителя, обеспечивая эффективное воспроизведение сигнала в области низших частот. Таким образом, в отличие от основного фазоинвертора здесь масса в отверстии заменена массой подвижной системы пассивного радиатора, включая дополнительный груз.
Груз позволяет более просто, чем это делается при измерении размера (объема) прохода в обычном фазоинверторе, регулировать резонансную частоту фазоинвертора. При уменьшении объема ящика обычного фазоинвертора приходится увеличивать объем прохода или уменьшать площадь отверстия, что снижает эффективность фазоинвертора. Фазоинвертор с закрытым отверстием свободен от этого недостатка и в это его основное достоинство.
Пассивные излучатели нашли применение в акустических системах эпохи СССР, таких как: “25 АС-128 Электроника” и “35 АС-015 Электроника”. В современных АС такое оформление применяется в акустике PMC IB2i или сабвуфере Sunfire True Subwoofer. Пассивный излучатель может быть практически любой формы, круглой, квадратной или к примеру овальной, как показано на фото ниже:
Другим положительным качеством фазоинвертора с закрытым отверстием является несколько большая синфазность движений обоих диффузоров в области резонанса по сравнению с движением объема воздуха в отверстии и диффузора громкоговорителя в обычном фазоинверторе. Резонансная частота фазоинвертора с закрытым отверстием равна ( также как и обычного):
fф = 1 : (2Π · (√mф · Сф)), где
- mф – масса подвижной системы пассивного радиатора плюс соколеблющаяся с ним масса воздуха, присоединенная к диффузору, г;
- Сф – результирующая гибкость (величина, обратная упругости) объема воздуха в ящике и дополнительной подвижной системы, см. дин.
Расчет фазоинвертора с закрытым отверстием производят следующим образом: выбрав объем ящика Vф и, зня эффективный диаметр диффузора пассивного радиатора Dэф определяют гибкость воздушного объема из выражения:
Здесь объем ящика Vф выражен в см3, а эффективный диаметр диффузора пассивного радиатора Dэф в см. Напомним, что эффективный диаметр диффузора равен:
Dэф =0,85-0,9 Dдиф, где
- Dдиф – полный диаметр диффузора (правильно измерять диаметр – от центра подвеса (гофра) с одной стороны до центра подвеса другой стороны).
Эквивалентный эффективный диаметр диффузора эллиптической (овальной) формы равен:
Dэкв.эф = (0,85 – 0,9) · (√Dб · Dм), где
- Dб – большой диаметр эллипса;
- Dм – малый диаметр эллипса.
Поскольку гибкость подвеса диффузора пассивного радиатора Спод много больше, чем гибкость воздушного объема ящика Сф, ее влияние на суммарную гибкость крайне мало и им можно пренебречь. Общая гибкость определяется по формуле:
Cобщ = (Спод · Сф) · (Спод + Сф)
И когда:
Спод >> Cф, Собщ ≈ Cф.
Приняв, как обычно, резонансную частоту закрытого фазоинвертора, равной основной резонансной частоте громкоговорителя, находят массу mф, соответствующей этой частоте и гибкости выбранного объема:
mф = 1 : (4Π2 · fф2 · Сф)
Как указывалось выше, в эту массу входит масса диффузора пассивного радиатора mрад и присоединенная масса соколеблющегося с ним воздуха Δm, т.е.:
mф = mрад + Δm.
Величина Δm зависит от эффективного диаметра диффузора и определяется выражением:
Δm = (8 · 10-4) · Dэф3, г
Таким образом, диффузор радиатора должен обладать массой:
mрад = mф – Δm;
Практически этой величине и будет равняться масса груза, который необходимо установить на диффузоре. Для облегчения необходимых расчетов в таблице приводятся значения гибкости объема Сф для ящиков объемом от 20 до 80 л и диффузоров пассивного радиатора с эффективным диаметром от 15 до 22 см, там же указанна величина присоединенной массы воздуха Δm для тех же диаметров диффузоров.
VФ, л | Гибкость объема ящика, см/дин 10-6 при Dэф, см | ||||||
15 | 16 | 17 | 18 | 19 | 20 | 22 | |
Δm, г | 1,7 | 3,3 | 3,9 | 4,7 | 5,5 | 6,4 | 8,6 |
20 | 0,45 | 0,35 | 0,27 | 0,22 | 0,17 | 0,14 | 0,1 |
30 | 0,67 | 0,52 | 0,41 | 0,32 | 0,26 | 0,21 | 0,15 |
40 | 0,9 | 0,69 | 0,55 | 0,43 | 0,35 | 0,29 | 0,19 |
50 | 1,12 | 0,87 | 0,68 | 0,54 | 0,44 | 0,36 | 0,24 |
60 | 1,35 | 1,04 | 0,82 | 0,65 | 0,52 | 0,43 | 0,29 |
70 | 1,57 | 1,21 | 0,95 | 0,76 | 0,61 | 0,5 | 0,34 |
80 | 1,8 | 1,4 | 1,09 | 0,87 | 0,7 | 0,57 | 0,39 |
Величина гибкости объема воздуха в ящиках с промежуточными значениями и эффективного диаметра диффузора радиатора определяют методом интерполяции по двум соседним значениям гибкости, между которыми находятся принятые размеры.
Для примера определим массу груза, который должен быть укреплен на диффузоре пассивного радиатора диаметром Dдиф = 22 см, устанавливаемом в ящике ФИ объемом Vф = 50 л при резонансной частоте ФИ 45 Гц. Эффективный диаметр:
Dэф = 0,87 → Dдиф=0,87 · 22 = 19 см.
Находим по таблице гибкость объема воздуха в ящике при таком эффективном диаметре диффузора: эта гибкость равна:
Сф = 0,44 · 10-6 см/дин.
Полная масса диффузора должна быть:
mф = 1 : (4Π2 · fф2 · Сф) = 106 : (4Π2 · 452 · 0,44) ≈ 28,4 г
Присоединенная масса воздуха, согласно таблице, равна Δm = 5,5 г. Следовательно, для получения заданной резонансной частоты необходимо установить дополнительный груз:
mрад = mф – Δm = 28,4 – 5,5 ≈ 23 г
Дополнительный груз представляется собой стальной или медный (латунный) диск толщиной h, которая для стали в зависимости от диаметра диска d, равна:
h = (0,16 · mрад) : d2
Как указывалось выше, магнитная система и центрирующая шайба удаляются из громкоговорителя, предназначенного для работы в качестве пассивного радиатора. Это делается для того, чтобы увеличить гибкость и линейность движения подвижной системы, и устранить опасность касания звуковой катушки. При этом не уменьшается действующий объем ящика. Представление о конструкции пассивного радиатора, установленного рядом с громкоговорителем, показано на рисунке ниже, на котором видно как дополнительный груз в виде диска прикреплен в центре диффузора болтом с гайками. Отверстие в диффузоре заклеивают кусочком жесткой бумаги (ватман или тонкий картон) с зубцами, приклеенными к диффузору целлулоидным или другим клеем, например БФ-2. Само собой разумеется, что основная резонансная частота громкоговорителя, предназначенного для пассивного радиатора, не имеет ни какого значения. Или же можно купить готовые пассивные излучатели, они сейчас в большой доступности.
Проектируя фазоинвертор с закрытым отверстием, не следует делать его объемом менее 30-40 л при резонансной частоте ниже 50 Гц, т.к. увеличение массы подвижной системы пассивного, также как и массы воздуха в проходе обычного ФИ, ухудшает переходные характеристики громкоговорителя.
Проверить правильность настройки сделанного фазоинвертора можно либо по видимой при резонансе ФМ амплитуде колебаний пассивного радиатора, либо по возрастающей при резонансе громкости, в чем можно убедиться, поставив кусок фанеры между диффузорами и поднесся ухо к диффузору пассивного радиатора. Также, как и в обычном фазоиверторе, частотная характеристика полного сопротивления громкоговорителя в фазоиверторе с закрытым отверстием должна иметь два максимум почти одинаковой высоты.
Ящик для фазоивертора можно изготовить из фанеры или ДСП плит толщиной 8-12 мм, при этом следует учесть, что он не должен иметь щелей. Внутрь ящика полезно поместить звукопоглощающий материал, например, поролон толщиной 15-30 мм, который сделает более гладкой частотную характеристику громкоговорителя в области средних частот.
По материалам из журнала «Радио», 1974, № 1
Нелинейные искажения
Нелинейные искажения обычных электродинамических головок заложены в традиционные конструкциях магнитных систем с несимметричным и неравномерным распределением магнитной индукции в магнитном воздушном зазоре [2] и несимметричной конической формой диффузоров, обладающих «парашютным эффектом” сопротивления воздуху, а также несимметричным размещением звуковых катушек в магнитной системе и нелинейной гибкостью подвесов подвижных систем [1].
Рис. 3. Сечение звуковой катушки 1 в магнитной системе 2 и графики зависимости магнитной индукции.
В сдвоенных головках по типу «диффузор к диффузору» достигаются следующие эффекты:
- нелинейность гибкости подвесов подвижных систем частично компенсируется:
- результирующая форма излучателя становится симметричной;
- компенсируется несимметричное расположение звуковых катушек в магнитных системах; это наиболее полно достигается путем подбора экземпляров головок с одинаковым смещением звуковых катушек, вызванным погрешностью в сборке,
- результирующее смещение подвижной системы в поршневом диапазоне сдвоенных головок становится симметричным относительно магнитной системы вследствие компенсации силы притяжения звуковой катушки с током к магнитопроводу и неравномерности магнитной индукции в зазоре магнитной системы.
На рис. 3 показаны сечение звуковой катушки 1 в магнитной системе 2 и графики зависимости магнитной индукции В1 и В2 в области зазоров сдвоенных головок ВА1. ВА2. Значения х, и х2 соответствуют глубине зазора.
В головках, сдвоенных по типу «диффузор за диффузором», устраняются только несимметричное расположение звуковых катушек в воздушных магнитных зазорах путем подбора экземпляров головок с противоположным смещением звуковых катушек, а также неравномерность АЧХ в низкочастотной полосе [3].
Амплитудно-частотная характеристика (АЧХ)
Амплитудно-частотная характеристика (АЧХ) электродинамической головки представляет собой зависимость звукового давления от частоты воспроизводимого сигнала при неизменной подводимой к звуковой катушке мощности.
Все выпускаемые до настоящего времени головки имеют неравномерные АЧХ [2], причем АЧХ разных экземпляров одного и того же типа головок имеют разную неравномерность и несколько отличные частоты основного резонанса подвижных систем.
В сдвоенных головках пики и провалы в полосе НЧ частично компенсируются и АЧХ получается более гладкой, а в полосах СЧ и ВЧ эти головки не работают как сдвоенные по указанным выше причинам.
Эквивалентный объем ЭДГ
Эквивалентный объем электродинамической головки — это объем воздуха в ящике, гибкость которого равна гибкости подвижной системы головки. В сдвоенной головке подвесы работают параллельно, поэтому результирующая гибкость ее в два раза меньше одной одиночной. Соответственно эквивалентный объем сдвоенной головки в два раза меньше одной и в четыре раза — двух одиночных головок [7] (формула):
где Vосг — эквивалентный объем сдвоенной головки; Vэ1. Vэ2 — эквивалентные объемы одиночных головок.