Усилитель мощности — «Оплеуха Микрухам 2.0» [2012]


ИНВЕРТОР 1

Этот инвертор предназначен только для питания сабвуферного усилителя по схеме ланзара. Выходное напряжение +/-65 Вольт. Инвертор не имеет стабилизацию выходного напряжения, но не смотря на это серьезные скачки напряжения не наблюдал. Построен инвертор по классической двухтактной схеме с применением ШИМ контроллера на микросхеме TL494. Трансформатор был намотан на двух кольцах марки 3000НМ (Евгений, спасибо, что выручил и с другого конца света выслал кольца), размеры колец 45*28*8. Если есть возможность, то используйте феррит марки 2000НМ, с ним меньше потерь в трансформаторе. Кольца не склеивал, просто обмотал прозрачным скотчем. Грани кольца не закруглял, просто перед намоткой сердечник обмотал полоской стекловолокна в два слоя. Стекловолокно не боится перегрева и обеспечивает довольно неплохую изоляцию обмоток, хотя в таких инверторах промышленного образца никогда не изолируют обмотки друг от друга, поскольку напряжение не столь высокое.

Намотка делалась двумя полностью идентичными шинами, каждая из шин состоит из 12 жил провода с диаметром 0,7 мм. Перед намоткой берем контрольный провод, им будем выяснять, какой длины нужна шина. Контрольный провод может быть любым, любого сечения (для удобства диаметр подобрать 0,3-1 мм), Итак, берем контрольный провод и мотаем 5 витков по на кольце, витки равномерно растягивая по всему кольцу. Теперь отматываем обмотку измеряя длину, допустим длина провода составила 20 см, следовательно для намотки основной обмотки провод нужно брать с запасом 5-7 см, т.е. 25-27 см, разумеется, длина не точная и привел только для примера. Теперь переходим дальше. Поскольку первичная (силовая) обмотка у нас состоит из двух полностью аналогичных плеч, то нам нужны 24 жилы провода 0,7 мм одинаковой длины. Дальше нужно собрать шины из 12 жил, концы жил скручиваем и переходим к процессу намотки.

В разных источниках приводятся отличающиеся друг от друга технологии намотки, этот метод отличается тем, что позволяет получить максимально равноценные обмотки. Намотку делаем сразу двумя шинами, желательно использовать жгут для удобства, но я мотал без него. Максимально аккуратно мотаем 5 витков по всему кольцу, в итоге у нас получается 4 отвода. Для стойкости витков обмотку изолируем, пробная изоляция может быть любой — скотч, изолента, нитки и т.п, лишь бы обмотка держалась, если уверены в правильности намотки, то можно ставить конечную изоляцию (в моем случае опять стекловолокно). Теперь нужно сфазировать обмотки, подключая начало первой полуобмотки (плеча) к концу второй или наоборот начало второй, к концу первой. Мест стыковки обмоток есть отвод от середины, на него подается силовой плюс 12 Вольт по схеме. Вторичная обмотка мотается и фазируется по тому же принципу, что и первичная. Обмотка состоит из 2х24 витков, мотается двумя шинами. Каждая шина состоит из 5 жил провода 0,7 мм.

Диодный выпрямитель собран из 4-х диодов серии КД213А. Это импульсные диоды с обратным напряжением до 200 Вольт, отлично себя чувствуют на частотах 50-80 кГц (хотя могут работать на частотах до 100 кГц), а максимально допустимый ток 10 Ампер — то, что нужно. В дополнительном охлаждении диоды не нуждаются, хотя в ходе работы может наблюдаться тепловыделение.

Дросселя в выходной цепи использовал готовые, от компьютерных блоков питания. Намотаны дросселя на ферритовом стержне (длина 1,5-2 см, диаметр 6 мм). Обмотка содержит 5-6 витков, намотана проводом 2-2,5 мм, для удобства можно мотать несколькими жилами более тонкого провода. Сглаживающие электролиты брал с напряжением 100 Вольт 1000 мкФ, работают с большим запасом. В итоге на плате инвертора 4 таких конденсатора в плече, еще два аналогичных стоят на плате усилителя Ланзар, т.е общая емкость фильтров в плече 5000 мкФ. Перед и после дросселей стоят пленочные конденсаторы с напряжением 100 Вольт, их емкость не особа критична и может быть в районе 0,1-1 мкФ.

Высокое входное сопротивление и неглубокая ОС — основной секрет теплого лампового звучания. Ни для кого не секрет, что именно на лампах реализуются самые высококачественные и дорогие усилители, которые относятся к разряду HI-End. Давайте поймем, что такое качественный усилитель? Качественным имеет право называться тот усилитель мощности НЧ, который полностью повторяет форму входного сигнала на выходе, не искажая его, разумеется выходной сигнал уже усиленный. В сети можно встретить несколько схем действительно высококачественных усилителей, которые имеют право относится к разряду HI-End и совсем не обязательна ламповая схематика. Для получения максимального качества, нужен усилитель, выходной каскад которого работает в чистом классе А. Максимальная линейность схемы дает минимальное кол-во искажений на выходе, поэтому в строении высококачественных усилителей особое внимание уделяется именно этому фактору. Ламповые схемы хороши, но не всегда доступны даже для самостоятельной сборки, а промышленные ламповые УМЗЧ от брендовых производителей стоят от нескольких тысяч, до нескольких десятков тысяч долларов США — такая цена уж точно не по карману многим.

Возникает вопрос — можно ли аналогичных результатов добиться от транзисторных схем ? ответ будет в конце статьи.

Линейных и сверхлинейных схем усилителей мощности НЧ достаточно много, но схему, которая будет сегодня рассмотрена является ультралинейной схемой высокого качества, которая реализована всего на 4-х транзисторах. Схема была создана в далеком 1969 году, британским инженером-звуковиком Джоном Линсли-Худом (John Linsley-Hood). Автор является создателем еще нескольких высококачественных схем, в частности класса А. Некоторые знатоки называют этот усилитель самым качественным среди транзисторных УНЧ и я в этом убедился еще год назад.

Первая версия такого усилителя была представлена на нашем сайте. Удачная попытка реализации схемы заставила создать двухканальный УНЧ по этой же схеме, собрать все в корпусе и использовать для личных нужд.

Особенности схемы

Не смотря на простоту, схема имеет несколько особенностей. Правильный режим работы может нарушиться из-за неправильной разводки платы, неудачного расположения компонентов, неправильное питание и т.п..

Именно питание — особо важный фактор — крайне не советую питать данный усилитель от всевозможных блоков питания, оптимальный вариант аккумулятор или блок питания с параллельно включенным аккумулятором.

Мощность усилителя составляет 10 ватт с питанием 16 Вольт на нагрузку 4 Ом. Саму схему можно приспособить для головок 4, 8 и 16 Ом.

Мною была создана стереофоническая версия усилителя, оба канала расположены на одной плате.

Поскольку оригинальных транзисторов схемы не удалось найти, пришлось использовать аналоги. Вся база — отечественная. Первый транзистор (где собственно формируется звук) поставил германиевый, на слух он звучит лучше. Можно использовать любые П-Н-П германиевые транзисторы малой мощности МП25 и ему подобные. Транзистор при желании можно заменить на КТ361 или не менее шумные.

Второй — предназначен для раскачки выходного каскада, поставил КТ801 (раздобыл достаточно трудно.

В самом выходном каскаде поставил мощные биполярные ключи обратной проводимости — КТ803 именно с ними получил несомненно высокое качество звучание, хотя экспериментировал со многими транзисторами — КТ805, 819 , 808, даже поставил мощные составные — КТ827, с ним мощность на много выше, но звук не сравниться с КТ803, хотя это лишь мое субъективное мнение.

Входной конденсатор с емкостью 0,1-0,33мкФ, нужно использовать пленочные конденсаторы с минимальной утечкой, желательно от известных производителей, тоже самое и с выходным электролитическим конденсатором.

Если схема рассчитана под нагрузку 4 Ом, то не стоит повышать напряжение питания выше 16-18 Вольт.

Звуковой регулятор решил не поставить, он в свою очередь тоже оказывает влияние на звук, но параллельно входу и минусу желательно поставить резистор 47к.

Сама плата — макетная. С платой пришлось долго повозиться, поскольку линии дорожек тоже оказывали некое влияние на качество звука в целом. Этот усилитель имеет очень широкий диапазон воспроизводимых частот, от 30 Гц до 1мГц.

Настройка — проще простого. Для этого нужно переменным резистором добиться половины питающего напряжения на выходе. Для более точной настройки стоит использовать многооборотный переменный резистор. Один шуп мультиметра присоединяем с минусом питания, другой ставим к линии выхода, т.е к плюсу электролита на выходе, таким образом, медленно вращая переменник добиваемся половины питания на выходе.

Ток покоя усилителя составляет 0,5-0,7А и это вполне нормально для класса А. КПД схемы — не более 25%, вся основная мощность источника питания превращается в ненужное тепло, которое выделяется транзисторами выходного каскада, поэтому им нужно интенсивное охлаждение, возможно понадобиться и кулер.

Все электролитические конденсаторы подбираются на 25 Вольт, хотя можно и на 16.

О звучании.

Ну, что тут сказать, чище звука еще не слышал, даже от некоторых ламповых усилителей, максимальная детальность каждой ноты, кажется, что играет живой оркестр, божественно чистый — и этим все сказано. Однозначно, эта схема может звучать лучше, чем многие ламповые усилители. Без подачи сигнала на вход из акустики нет никаких писков и шумов, даже очень тихих, а любой известный мне усилитель не способен на такой. Сравнивал звук с LM1875, с тда 2030, даже с STK412-010 и схемой ланзара — линсли худ на много лучше и чище.

В дальнейшем планируется собрать стильный корпус для этого усилителя, но об этом в другой раз.

Печатная плата

С уважением — АКА КАСЬЯН

ЗАПУСК ПЕРВОГО ИНВЕРТОРА БП

Перед запуском инвертора тщательно проверяем правильность монтажа. Маломощные транзисторы BC556/557 можно заменить на отечественный аналог КТ3107, ВС546 на КТ3102 или любые другие с близкими параметрами. Полевые ключи в ходе работы без выходной нагрузки не должны нагреваться, а с нагрузкой нагрев плеч должен быть равномерным. Последний этап — теплоотвод. Полевые транзисторы в моем случае укреплены на теплоотвод от компьютерного блока питания, через слюдяные прокладки и изолирующие шайбы.

В схеме реализован ремоут контроль (REM), т.е. основной, силовой плюс и минус всегда подключены к усилителю, а для того, чтобы схема завелась, подается плюс на точку REM, открывается транзистор BC546 и подается питание на генератор и начинается рабочий цикл инвертора. Плюс на ремоут можно подавать от автомагнитолы, или же можно приспособить в машине маленький тумблер, которым можно включить и выключить усилитель.

Если возникли проблемы…

Проблема. Бывает так, что при первом же включении выходят из строя полевики.

Причина и устранение. Неправильно сфазирована первичная обмотка или бракованные транзисторы. Если уверены в правильности монтажа и в исправности всех компонентов, то скорее всего первичная обмотка трансформатора неправильно сфазирована. Для этого отключаем вторичную цепь, то есть нагрузку, которая подключена ко вторичной обмотке и снова запускаем трансформатор (часто, проблемы могут возникнуть на вторичных цепях), если все также, то проверяем транзисторы на исправность, они скорее всего будут «убитыми», заменяем и фазируем трансформатор правильно.

Проблема. При включении одна из пар транзисторов перегревается, вторая пара холодная.

Причина и устранение. Вначале проверяем наличие прямоугольных импульсов на 9 и 10 выводах микросхемы, если все ок, то проверяем подключение диодов и маломощных транзисторов, такая проблема возникает по двум причинам — неправильное подключение маломощных транзисторов драйвера или же неравноценные плечи первичной обмотки.

ИНВЕРТОР 2

Схема и печатная плата второго инвертора полностью схожа с первым. Выходное напряжение для питания каналов ОМ составляет 2х55 Вольт (+/-55В). Вторичная обмотка на сей раз намотана 6-ю жилами провода 0,8 мм и состоит из 2х28 Витков, мотается по той же технологии, что и в случае первого инвертора.

Обратите внимание на то, чтобы первичные и вторичные обмотки были обязательно намотаны В ОДИНАКОВОМ НАПРАВЛЕНИИ!

Другая вторичка предназначена для запитки блока усилителей на микросхемах LM1875. Обмотка состоит из 2х8 Витков, намотана 4-мя жилами провода 0,8 мм. После сборки инвертора тщательно проверяем монтаж на ошибки, если таковых нет, то беремся за мультиметр и проверяем вторичные цепи на замыкания.

ПЕРВОЕ ВКЛЮЧЕНИЕ

Первый запуск инвертора стоит сделать от лабораторного БП с защитой от КЗ, при этом в момент запуска защита может ошибочно сработать, если блок маломощный, в моем случае использовался переделанный БП с током 3,5 А. Холостой ток инвертора 170-280 мА, зависит от правильного расчета трансформатора, рабочей частоты генератора и типа полевых ключей, немалую роль играет резистор снаббера, в моем случае с ним пришлось чуток поиграться, чтобы снизить потребление схемы.

Во время холостого хода, на ключах не должно наблюдаться тепловыделения, если оно есть, то имеется проблема с монтажом или нерабочий компонент. Перед запуском промойте плату от флюсов, для этого можно использовать ацетон или растворитель. А теперь приступаем собственно к самому блоку УМЗЧ…

После успешного запуска блока питания, переходим к самой интересной части конструкции — блок усилителей мощности звука. В том числе фильтр низких частот для сабвуфера и модуль стабилизации.

УСИЛИТЕЛЬ ДЛЯ САБВУФЕРА ПО СХЕМЕ ЛАНЗАРА

Ну что сказать про один из самых повторяемых схем усилителя мощности, — схема Ланзар была разработана еще в 70-х годах прошлого столетия. На современной высокоточной элементарной базе, ланзар стал звучать еще лучше. По идее, схема отлично подходит и для широкополосной акустики, искажения при половине громкости всего 0,04% — полноценный Hi-Fi.

Выходной каскад усилителя построен на паре 2SA1943 и 2SC5200, все каскады собраны на максимально близких по параметрам комплиментарных парах, усилитель построен полностью по симметричной основе. Номинальная выходная мощность усилителя составляет 230-280 ватт, но можно снять гораздо больше, повышая входное напряжение питания. Номиналы ограничительных резисторов дифференциальных каскадов подбирается исходя от входного напряжения. Ниже приведена таблица.

Питание, ВСопротивление, кОм
±703,3…3,9
±602,7…3,3
±502,2…2,7
±401,5…2,2
±301,0…1,5

Эти резисторы подбираются с мощностью 1-2 ватт, в ходе работы на них может наблюдаться тепловыделение.

Регулирующий транзистор заменил на отечественный КТ815, на тот момент другого не было под рукой. Он предназначен для регулировки тока покоя выходных каскадов, в ходе работы не перегревается, но укреплен на общий теплоотвод с транзисторами выходного каскада.

Первый запуск схемы желательно сделать от сетевого блока питания, последовательно сетевой обмотке трансформатора подключите накальную лампу на 100-150 ватт, если будут проблемы, то спалите минимум деталей. А вообще, схема Ланзара не критична к монтажу и компонентам, я пробовал даже с широким разбросом используемых компонентов, с использованием отечественных радиодеталей — схема показывает высокие параметры даже в этом случая. Принципиальная схема Ланзара имеет две основные версии — на биполярных транзисторах и с применением полевых ключей в предпоследнем каскаде, в моем случае первая версия.

Второй предвыходной каскад работает в чистом классе «А«, поэтому в ходе работы транзисторы перегреваются. Транзисторы этого каскада обязательно устанавливают на теплоотвод, желательно общий, не забудьте про изоляции — слюдяные пластины и изолирующие шайбы для шурупов.

Правильно собранная схема заводится без всяких проблем. Первый запуск делаем с ЗАКОРОЧЕННЫМ НА ЗЕМЛЮ ВХОДОМ, т.е. вход усилителя стыкуем с средней точкой с блока питания. Если после запуска ничего не взорвалось, то можно отсоединять вход от земли. Дальше подключаем нагрузку — динамик и включаем усилитель. Для того, чтобы убедиться в работоспособности усилителя, достаточно дотронуться до оголенного входного провода. Если в головке появляется своеобразный рев — то усилитель работает! Дальше можно укрепить все силовые части на теплоотводы и подать на вход усилителя звуковой сигнал. После 15-20 минут работы на 30-50% от максимальной громкости нужно настроить ток покоя. На фотографии все детально показано, в качестве индикатора напряжение желательно использовать цифровой мультиметр.

Замер выходной мощности усилителя

Как выставить ток покоя

ФНЧ И БЛОК СТАБИЛИЗАЦИИ

Фильтр низкой частоты и сумматора построен на двух микросхемах. Он предназначен для плавной регулировки фазы, громкости и частоты. Сумматор предназначен для суммирования сигналов обеих каналов, для получения более мощного сигнала. В промышленных автоусилителях высокой мощности используется именно такой принцип фильтрации и суммирования сигнала, но сумматор можно при желании исключить из схемы и обойтись только фильтром низких частот. Фильтр срезает все частоты, оставляя только предел в пределах 35-150 Гц.

Регулировка фазы позволяет согласовать сабвуфер с акустическими системами, в некоторых случаях её тоже исключают. Этот блок питается от стабилизированного источника двухполярного напряжения +/-15 Вольт. Питание можно организовать с помощью дополнительной вторичной обмотки или же использовать двухполярный стабилизатор напряжения для понижения напряжения от основной обмотки. Для этого собран двухполярный стабилизатор. Первоначально напряжение снижается диодами зенера, затем усиливается биполярными транзисторами и подается на линейные стабилизаторы напряжения типа 7815 и 7915. На выходе стабилизатора образуется стабильное двухполярное питание, которым и питается блок сумматора и ФНЧ.

Стабилизаторы и транзисторы могут греться, но это вполне нормально, при желании их можно укрепить на теплоотводы, но в моем случае имеется активное охлаждение кулером, поэтому теплоотводы не пригодились, к тому же тепловыделение в пределах нормы, поскольку сам блок ФНЧ потребляет очень мало.

Усилитель мощности Only Music 2.7 (ex «оплеуха микрухам») [2018]

Пролог. Идея о создании данного усилителя, берет свое начало еще со времени разработки усилителя Only Music 3 (OM3). Тогда в планах было намерение сделать помимо основной версии ОМ3, еще и упрощенную его версию. От этой идеи я отказался, но спустя некоторое время все таки решил к ней вернутся. Связано это с излишней сложностью повторения ОМ3, которая вызвала много трудностей у желающих повторить усилитель. Именно это послужило причиной создания нового усилителя и возвращения к изначальной концепции серии — максимальное качество при минимальной сложности и габаритах.

Концепция. Как уже было сказано выше, новый усилитель преследует старую концепцию, заложенную еще в «оплеуха микрухам 2» (ОМ2). При разработке усилителя ставилась цель достичь максимальной повторяемости, надежности и стабильности схемы, а также максимально уменьшить разнообразие применяемой элементной базы и исключить из перечня используемых радиодеталей, малораспространенные наименования. Качественные параметры усилителя, так же не оставались без внимания — новый усилитель не уступает ОМ3, а по большинству параметрам даже его превосходит. Благодаря появлению огромного числа производителей печатных плат и их активной конкуренции между собой, появилось огромной число выгодных предложений по изготовлению заводских печатных плат малыми партиями, поэтому мной была сделать ставка на двухстороннюю печатную плату, рассчитанную на заводское изготовление. Тем не менее, от односторонней печатной платы я не отказался, поэтому так же сделал версию печатной платы, рассчитанную на домашнее изготовление по «лазерно-утюжной технологии» (ЛУТ). Габариты заводской печатной платы точно такие же, как и у авторской печатной платы для ОМ2 — 100х67мм, а габариты односторонней платы немного больше — 100х73мм.

Имя. Вы наверное задаетесь вопросом: почему 2.7, а не 3.5 например? На самом деле здесь все предельно просто — таким образом мне хотелось показать, что данный усилитель по своей концепции ближе к ОМ2, чем к ОМ3.

Схема. В который раз я решил не изменять традициями и использовать классическую Линовскую топологию. Идея схемы усилителя напряжения (УН), которая подверглась значительным доработкам и улучшениям в настоящем усилителе, была позаимствована у хорошо зарекомендовавшего себя усилителя BackBen, моей разработки. Дифференциальный каскад (ДК), был дополнен каскодом, который позволил разгрузить входную пару транзисторов по мощности и напряжению. Это позволило применить на входе низковольтные, малошумящие, супербета транзисторы, что вместе со снижением напряжения коллектор-эмитер входной пары и рассеиваемой них мощности, позволило значительно снизить уровень шума на выходе усилителя. Была возращена возможность подстройки «нуля» имевшаяся в усилителе ОМ2, что позволяет точно отбалансировать дифференциальный каскад. Генераторы стабильного тока (ГСТ), для дифференциального каскада и каскада усилителя напряжения (КУН) — независимы друг от друга и имеют независимые источники опорного напряжения. Конденсатор С12 повышает стабильность работы ГСТ и значительно снижает пульсации их опорного напряжения. Применен принципиально отличающийся способ частотной коррекции усилителя, относительно примененных в ОМ2 и ОМ3, позволивший получить гораздо большее усиление с разомкнутым контуром общей отрицательно обратной связи чем в ОМ3 и гораздо большую устойчивость чем в ОМ2. В процессе разработке ОМ2.7 было решено отказаться от одного решения примененного в усилителе BlackBen — составного транзистора в каскаде усилителя напряжения, по причине того, что это решение не давало каких-либо заметных преимуществ, но снижало повторяемость устройства из-за не самой высокой распространенности в продаже составных транзисторов MPSA13. Выходной каскад, впервые в серии ОМ — трехкаскадный «тройка», что позволило улучшить буферизацию усилителя напряжения от нагрузки усилителя, снизить зависимость нелинейных и интермодуляционных искажений от выходной мощности и характера нагрузки. Данный усилитель, как и ОМ3, имеет защиту от короткого замыкания в нагрузке.

Технические характеристики. Параметры схемы снимались с использованием компьютерной программы RMAA 6.2.5. В качестве измерительных ЦАП и АЦП использовалась звуковая карта ASUS Xonar Essence ST. В качестве нагрузки для усилителя использовались два параллельно включенные мощных резистора сопротивлением 10Ом (что дало результирующее сопротивление 5Ом). Для измерения скорости нарастания/спада выходного напряжения усилителя, использовался генератор прямоугольных импульсов и осциллограф UNI-T UTD2025CL. В качестве лабораторного блока питания использован классический, не стабилизированный блок питания, состоящий из: трансформатора, диодного моста и сглаживающих конденсаторов емкостью по 15000мкФ в каждом плече. Напряжение на шинах питания усилителя при отсутствии входного сигнала +/- 42В, ток покоя выходных транзисторов — 80мА. Параметры помеченные звездочкой (*) — получены при помощи компьютерной симуляции работы схемы, помеченные двумя звездочками (**) — путем пересчета реально полученных параметров под другие условия измерения (другую нагрузку, другую частоту сигнала и так далее).

Выходная мощность (1кГц): Выходная мощность (4Ом) = 140 Вт** Выходная мощность (5Ом) = 110 Вт Выходная мощность (8Ом) = 70 Вт**

Уровень шума: Уровень шума (А-взвешенный) = не хуже -100 дБ

Коэффициент нелинейных искажений:


Коэф. нелинейных искажений (1кГц, 10Вт, 5Ом) = не более 0.0005 % Коэф. нелинейных искажений (1кГц, 75Вт, 5Ом) = не более 0.0015 %

Коэф. нелинейных искажений (20кГц, 10Вт, 5Ом) = не более 0.003 %* Коэф. нелинейных искажений (20кГц, 75Вт, 5Ом) = не более 0.009 %*

Интермодуляционные искажения + шум: Интермодуляционные искажения + шум (60Гц+7кГц, 10Вт, 5Ом) = не более 0.0025 % Интермодуляционные искажения + шум (60Гц+7кГц, 75Вт, 5Ом) = не более 0.003 %

Частотный диапазон: Нижняя граница частотного диапазона (по уровню -1.5дБ относительно 1кГц) = 18 Гц (Примечание: завал в правой части графика, обусловлен исключительно параметра звуковой карты и не зависит от наличия или отсутствия испытуемого усилителя в цепи сигнала).

Верхняя граница частотного диапазона (по уровню -1.5дБ относительно 1кГц) = 177 кГц*

Скорость изменения выходного напряжения = 25 В/мкС

Переходная характеристика (1, 10, 20 кГц):

Приведенные технические характеристики соответствуют авторскому варианту усилителя собранного на заводской печатной плате, они могут незначительно отличаться, в лучшую или худшую сторону, для каждого конкретного экземпляра усилителя. Параметры усилителя собранного на самодельной плате, отличаются не более чем на величину погрешности измерения. При сравнении параметров усилителей собранных на заводской и на самодельной печатных платах, использовались абсолютно одинаковые радиодетали и даже провода. Первым был собран и обмерян усилитель на заводской плате. Потом все радиодетали были выпаяны из заводской платы и установлены уже на самодельной плате, после чего были измерены параметры усилителя на этой плате. Сравнительная характеристика параметров усилителей собранных на разных печатных платах и фото готовых усилителей:

Элементная база. В этой части статьи, просто перечислю основные моменты связанные с элементной базой, которых следует принять во внимание и строго придерживаться чтобы успешно повторить и запустить данный усилитель:

  • все применяемые при сборке усилителя элементы, перед их установкой на плату, должны быть проверены на работоспособность и соответствие необходимым параметрам (сопротивлению, емкости, ESR, коэффициенту усиления и так далее);
  • не допускается устанавливать элементы ориентируясь исключительно на их маркировку, без проверки на соответствие реального номинала маркировке;
  • лучше отказаться от использования бывших в употреблении радиодеталей и использовать при сборке только новые радиодетали;
  • предпочтительно использовать металлопленочные резисторы (MF) и отказаться от использования углеродистых резисторов (CF) из-за их высокого собственного шума;
  • допускается использование металлопленочных резисторов производства СССР;
  • при использовании резисторов с допуском 5%, крайне желательно осуществить подбор в пары, резисторов R6 и R11, R7 и R12, с точностью не хуже 1%;
  • для достижения равного коэффициента усиления и соответственно — равной громкости обоих каналов стерео усилителя, рекомендуется заранее подобрать по две пары резисторов 15кОм и 470Ом (для левого и правого каналов усилителя), с точностью не хуже 1%, чтобы использовать их в качестве — R1 и R19, R2 и R8;
  • при использовании резисторов с допуском 1% — осуществлять подбор нет необходимости;
  • использование в качестве R35 и R36 проволочных резисторов — не рекомендуется;
  • категорически запрещается самовольно заменять какие-либо резисторы, на резисторы другого номинала, отличающегося от номинала указанного в схеме;
  • в качестве подстроечных резисторов R9 и R20, допускается использовать только многооборотные резисторы типа 3296W, допускается использовать подстроечные резисторы с сопротивлением от 200 до 470Ом;
  • при установке на плату, движок подстроечного резистора R9 должен находится в среднем положении (сопротивление между каждым из крайних и центральным выводов должно быть одинаковым), а сопротивление подстроечного резистора R20 должно максимальным;
  • все типы применяемых в схеме конденсаторов и их минимально необходимое рабочее напряжение указаны в списке радиоэлементов к данной статье;

  • допускается использовать конденсаторы с большим рабочим напряжением чем это указано в списке радиоэлементов;
  • не стоит переплачивать за конденсаторы аудиофильских серий — применение их в схеме усилителя не приведет к каким-либо улучшениям характеристик усилителя или его звучания;
  • каждый конденсатор, перед установкой его на плату, должен быть проверен на соответствие его маркировки реальному значению емкости, проверен на величину ESR, проверен на отсутствие повышенной утечки. Данная процедура выполняется для КАЖДОГО конденсатора устанавливаемого на плату усилителя;
  • не допускается использование электролитических конденсаторов производства СССР, а также бывших в употреблении электролитических конденсаторов, конденсаторов имеющих видимые дефекты в виде вмятин или вздутий, подтеков электролита;
  • допускается использование стабилитронов других моделей, но с тем же номинальным напряжением стабилизации и мощностью;
  • допускается использовать только те модели транзисторов, что указаны в схеме, либо их аналоги указанные в списке радиоэлементов;
  • перед установкой каждого их транзисторов на плату, необходимо убедиться в их работоспособности и соответствии параметров указанным в даташите на данный транзистор;
  • транзисторы VT18, VT19, VT20, VT21 и VT12, должны быть установлены на общем радиаторе. Площадь радиатора, очень приблизительно, можно выбрать из расчета 10-15см2 на каждый Ватт выходной мощности усилителя (1000-1500см2 для усилителя с выходной мощностью 100Вт);
  • транзисторы VT9 и VT13 могут быть установлены на небольшие теплоотводы (для этого предусмотрены места на печатных платах), однако допускается эксплуатация усилителя без установки транзисторов VT9 и VT13 на радиаторы;
  • транзисторы VT2 и VT6, VT3 и VT7, VT4 и VT8, необходимо подобрать в пары по коэффициенту усиления с точностью не хуже 1%;

Печатные платы. Фотографии «чистых» печатных плат, а также фотографии этих плат в процессе изготовления, монтажа и испытаний:

Выводы на печатной плате. Наименование и назначение выводов на односторонней и двухсторонней платах совпадают, поэтому следующая информация актуальна для обоих плат. +U — плюс питания; -U — минус питания; GND — основная силовая земля; oGND — выходная земля (минусовая выходная клемма); sGND — сигнальная земля; IN — вход сигнала; OUT — выход сигнала (плюсовая выходная клемма).

Коммутация цепей усилителя. Правильный способ соединения блоков и земель стерео усилителя: Эксплуатация усилителя без устройства защиты акустической системы (АС) — не безопасна и строго не рекомендуется. Работа усилителя без устройств защиту допускается только для первого запуска и настройки усилителя. В качестве защиты АС для данного усилителя рекомендую использовать устройство защиты — DEF 2022.

Настройка. После успешного первого включения усилителя, необходимо произвести регулировку «нуля» и тока покоя. Для регулировки «нуля», необходимо замкнуть вход усилителя (замкнуть выводы IN и sGND на плате усилителя), подключить милливольтметр или мультиметр к выходу усилителя (выводы OUT и oGND на плате), после чего вращая движок подстроечного резистора R9, добиться минимального значения постоянного напряжения на выходе усилителя (хорошим можно считать результат, когда постоянное напряжение на выходе усилителя не превышает +/-5мВ). На следующем этапе настройки, необходимо выставить какое-нибудь значение тока покоя чтобы прогреть усилитель перед финальной регулировкой тока покоя. Щупы мультиметра (милливольтметра), необходимо подключить к эмитерам выходных транзисторов (VT20 и VT21), как показано на иллюстрации:

После чего вращая движок подстроечного резистора R20, выставить небольшой ток покоя (примерно 40-50мА, что соответствует показаниям подключенного к выходу милливольтметра 18-22мВ) и оставить усилитель в таком состоянии прогреваться примерно на десять минут. Регулировать ток покоя без прогрева усилителя — не рекомендуется так как после прогрева усилителя, значение тока покоя изменится относительно выставленного значения на холодном усилителе. Когда усилитель прогреется (температура выходных транзисторов стабилизируется на одном значении и перестанет расти), можно приступать непосредственно к самой регулировке тока покоя. Для этого, точно так же, вращая движок R20, выставляем необходимое вам значение тока покоя. Рекомендую выставлять значение тока покоя в диапазоне от 70 до 100мА (что соответствует показаниям милливольтметра подключенного к выходу усилителя — 30-44мВ). Большее значение тока покоя положительно не повлияет ни на характеристики усилителя, ни на его звучание, зато значительно увеличит нагрев выходных транзисторов и снизит КПД. Нагрузку к выходу усилителя для регулировки «нуля» и тока покоя, подключать — нет необходимости. На этом настройку можно считать оконченной, а усилитель — готовым к работе. Теперь можно приступать к прослушиванию.

Спасибо за внимание!

П.С. Под списком используемых радиоэлементов можно найти и скачать файлы печатных плат: одностороннюю — рассчитанную на домашнее изготовление ЛУТом (в формате .lay), двухстороннюю — рассчитанную на заводское изготовление (в формате Gerber). Архив с Gerber файлами уже подготовлен к заводскому производству, в каких-либо доработках не нуждается и может быть сразу отправлен любому производителю печатных плат. Не кормите посредников — заказывайте заводские платы напрямую у производителя. Вот теперь точно все!

Список радиоэлементовОбозначение Тип Номинал Количество ПримечаниеМагазинМой блокнот

Only Music 2.7 R3, R31, R32 Резистор (0.25Вт)1 Ом3 R23, R24, R25, R26 Резистор (0.25Вт)22 Ом4 R6, R7, R11, R12, R16, R17, R30 Резистор (0.25Вт)100 Ом7 R5 Резистор (0.25Вт)200 Ом1 R2, R8, R21 Резистор (0.25Вт)470 Ом3 R14, R29, R33, R34 Резистор (0.25Вт)1 кОм4 R13, R18 Резистор (0.25Вт)2.4 кОм2 R1, R4, R10, R15, R19, R22, R27, R28 Резистор (0.25Вт)15 кОм8 R38, R39 Резистор (1Вт)3.6 Ом2 SMD 2512 R37 Резистор (1Вт)10 Ом1 SMD 2512 R35, R36 Резистор (2Вт)0.22 Ом2 R9, R20 Резистор (подстроечный)200 Ом2 3296W C17, C18 Конденсатор (керамический)47 пФ2 MLCC (NP0) 50В или CT81 (Y5P) 1000В C11 Конденсатор (керамический)4.7 нФ1 CT81 (Y5P) 1000В или MLCC (X7R) 50В C15 Конденсатор (керамический)0.1 мкФ1 MLCC (X7R) 50В C7, C19, C20 Конденсатор (пленочный)1 нФ3 CL11 100В или MLCC (X7R) 50В C26 Конденсатор (пленочный)47 нФ1 CL11 100В C1, C3, C9, C16, C25, C27, C28, C29 Конденсатор (пленочный)0.1 мкФ8 CL11 100В C2, C13, C21, C22 Конденсатор (пленочный)1 мкФ4 CL21 63В C8 Конденсатор (электролитический)100 мкФ1 Неполярный (NP) 16В C12 Конденсатор (электролитический)100 мкФ1 50В C4 Конденсатор (электролитический)220 мкФ1 25В C5, C6 Конденсатор (электролитический)470 мкФ2 50В C23, C24 Конденсатор (электролитический)1000 мкФ2 50В VD1 СтабилитронBZX55-C151 15В 0.5Вт VD2 СтабилитронBZX55-C3V31 3.3В 0.5Вт VD3, VD4, VD5, VD6 Выпрямительный диод1N41484 VT10 Биполярный транзисторBC5501 BC550B или BC550C VT2, VT3, VT6, VT7 Биполярный транзисторBC5604 BC560B или BC560C VT4, VT8, VT14, VT16 Биполярный транзистор2N55514 VT1, VT5, VT11, VT15, VT17 Биполярный транзистор2N54015 VT12 Биполярный транзисторBD1351 или BD137, BD139, КТ815, КТ817 VT9, VT19 Биполярный транзистор2SD6692 или HSD669 VT13, VT18 Биполярный транзистор2SB6492 или HSB649 VT20 Биполярный транзисторNJW02811 или NJW3281, NJW21194, 2SC5198, 2SC5200 VT21 Биполярный транзисторNJW03021 или NJW1302, NJW21193, 2SA1941, 2SA1943 L1 Катушка индуктивности1 мкГн1 12-15 витков, проводом д1.0-1.2мм, на диаметре 8.0-8.5мм Добавить все

Прикрепленные файлы:

  • OM27LUT.lay (346 Кб)
  • OM27_01_(2).zip (62 Кб)

Теги:

  • УНЧ

ОПЛЕУХА МИКРОСХЕМАМ

Оплеуха микрухам — не самый простой, но высококачественный усилитель мощности НЧ. Усилитель способен развивать максимальную выходную мощность в 130 ватт и работает в довольно широком диапазоне входного напряжения. Выходной каскад усилителя построен на паре 2sa1943 2sc5200 и работает в режиме АВ. Эта версия, автором была разработана в этом году, ниже ее основные параметры.

  • Диапазон питающих напряжений = +/- 20В … +/- 60В
  • Номинальное напряжение питания (100Вт, 4 Ом) = +/- 36В
  • Номинальное напряжение питания (100Вт, 8 Ом) = +/- 48В

С мощностью все понятно, а что со стороны искажений?

  • THD+N (при Pвых<=60Вт, 20кГц) <= 0,0009%
  • THD+N (при максимальной выходной мощности, 1кГц) = 0,003%
  • THD+N (при максимальной выходной мощности, 20кГц) = 0,008%

Детали, используемые в этом модуле — подстроечные резисторы, маломощные и среднемощные транзисторы:

Усилитель мощности — «Оплеуха Микрухам 2.0» [2012]

Предыстория. Почему я решил сделать новую ОМ? А потому-то захотелось сделать усилитель для себя, хороший, но не хотелось «городить огород» и изобретать что-то сложное, монстроподобное, поэтому я начал экспериментировать со старой схемой оплеухи с целью получения максимального качества, при минимуме деталей. Наверное, многие помнят мой симметричный усилитель — большой и сложный… Так вот, новая оплеуха, при всей простоте схемы ни на грамм не уступает тому симметричному усилителю. Сделать сложную схему – просто, а вот сделать качественную схему и при этом отказаться от ведра транзисторов и печатной платы размеров метр на метр — куда сложней. Поэтому основная цель разработки усилителя была — получить максимальные параметры, при максимальной простоте схемы и это было достигнуто оптимизацией режимов работы каскадов, применением других полупроводников и некоторыми изменениями в схеме.

Схема усилителя. Схема представляется собой типичного Линна известного еще нашим предкам. Особенность схемы не в новизне, которой тут нет, а в современной элементарной базе, правильно подобранных режимах работы и правильной коррекции. Все это позволило получить от вполне стандартной схемы очень хорошие характеристики. А вот и сама схема:
Технические характеристики усилителя (частично получены путем моделирование в Multisim):

Частотный диапазон относительно 10 кГц (-0,1 дБ) = 25 — 40 000 Гц Частотный диапазон относительно 10 кГц (-1 дБ) = 8 — 125 000 Гц Частотный диапазон относительно 10 кГц (-3 дБ) = 4 — 250 000 Гц Максимальная выходная мощность (Нагрузка 8 Ом, 1 кГц) = 97,4 Вт Максимальная выходная мощность (Нагрузка 8 Ом, 20 кГц) = 96,7 Вт THD+N (при Pвых <= 60 Вт, 20 кГц) <= 0,0009% THD+N (при максимальной выходной мощности, 1 кГц) = 0,003% THD+N (при максимальной выходной мощности, 20 кГц) = 0,008% Максимальная скорость нарастания выходного напряжения (для диф.каскада) = 225 В/мкс Максимальная скорость нарастания выходного напряжения (для КУНа) = 187 В/мкс Диапазон питающих напряжений = +/- 25 … +/- 60 В Номинальное напряжение питания (100 Вт, 4 Ом) = +/- 36 В Номинальное напряжение питания (100 Вт, 8 Ом) = +/- 48 В

Измерения RMAA:

Элементная база или «из чего собирать?». При сборке любого УМЗЧ следует помнить, что каждый компонент усилителя, каждый конденсатор, транзистор и даже резистор, в какой-то степени влияет на его технические характеристики, поэтому при сборке усилителя желательно выбирать наиболее качественные компоненты из доступных.

Резисторы. Все резисторы, кроме дополнительно указанных на схеме, устанавливаются рассчитанные на мощность рассеивания 0,25 Вт. Лучше применять металлопленочные резисторы из-за их меньшего собственного шума. Можно применять как советские МЛТ, так и любые их китайские аналоги. Не желательно в качестве R26-R29 применять проволочные резисторы из-за их относительно высокой паразитной индуктивности. Стремиться применять высокоточные резисторы (с допуском менее 1%) — не нужно. Допустимо применять резисторы с допуском 5%. Подстроечные резисторы (R3 и R16) следует брать импортные, многооборотные (это облегчит настройку усилителя).

Конденсаторы. Основное внимание необходимо уделить качеству конденсаторов, которые стоят на пути прохождения сигнала (С1 и С2). В роли этих конденсаторов лучше выбрать наиболее качественное из возможных. Лучше не применять керамические конденсаторы в качестве С1. В качестве С2 лучше применить не полярный электролит, но в случае чего, можно и полярный. Ни в коем случае нельзя применять электролиты производства СССР, поскольку они скорее всего уже давно высохли и поэтому не смогут обеспечить должных качественных параметров. В качестве С7 и С8 лучше всего использовать пленочные конденсаторы, но допускается применять и керамические конденсаторы. Конденсаторы C3,C4,C5 и C6 — керамические. Конденсаторы С9, С10, С12, С13, С15, С16, С21, С22 – электролиты, фильтра питания. Их качество решающей роли не играет, но лучше избегать левых китайских контор, а так же высохших советских электролитов. Напряжения конденсаторов по шинам питания, необходимо выбирать исходя из напряжением питания. Конденсаторы С11, С14, С17, С18, С19, С20 – пленочные. Напряжение их так же следует выбирать исходя из напряжения питания. Их качество так же сильного значения не имеет, но лучше выбрать что-нибудь по лучше.

Транзисторы. Самое главное правило – применять то, что указано на схеме и сюрпризов не будет. Не рекомендуется применять транзисторы-аналоги, особенно — производства СССР, а также категорически не рекомендуется применять транзисторы KSE340/350 (MJE340/350) – это почти со стопроцентной гарантией приведет к самовозбуждению усилителя. При покупке транзисторов следует опасаться поддельных транзисторов. Фотографии оригинальных транзисторов привожу ниже:

2SC5200/2SA1943

2SC4793/2SA1837

2SD669/2SB649

BC546B/BC556B

BC337

Некоторые важные моменты по сборке усилителя. Теперь когда с элементной базой разобрались и определились из чего будем строить усилитель, необходимо разобраться с другими не менее важными моментами.

Радиатор. Усилитель работает в классе AB и поэтому нуждается в очень серьезном охлаждении. Пожалуй основной для нас качественной характеристикой радиатора является площадь его поверхностей. Для отвода 1 Вт тепла необходимо приблизительно 15 см2 площади радиатора (для алюминия и его сплавов). Необходимую площадь радиатора можно рассчитать по формуле: S=Pвых*(1-КПД)*15. Где, Pвых — выходная мощность усилителя. Для 100 Вт’ного усилителя площадь радиатора должна быть не менее: S=100*(1-0,55)*15=675 см2.

Некоторые важные моменты. Далее просто перечислю что необходимо учитывать при сборке:

  1. Допускается нагрев транзисторов VT7 и VT10 до 70 градусов – это их нормальный режим работы.
  2. Транзисторы VT11, VT12, VT13, VT14, VT9 должны быть установлены на ОДНОМ радиаторе.
  3. Желательно хорошо пролудить силовые дорожки на плате усилителя (земляную, выходную, дорожки питания и эмитерные дорожки выходников).
  4. Усилитель необходимо настраивать с закороченным входом и только после 10 минутного прогрева.
  5. Ток покоя может плавать в пределах +/- 10-20% — это нормально.
  6. Усилитель не имеет защиты от КЗ, перегрева и от постоянного напряжения на выходе, поэтому не допускается использование усилителя без дополнительных средств защиты..
  7. При эксплуатации усилителя без схемы задержки подключения АС возможен небольшой хлопок при включении и/или выключении питания.
  8. Усилитель собранный на исправных деталях запускается сразу без всяких проблем.

Настройка тока покоя. Между эмитерами VT13 и VT14 включаем милливольтметр. Подаем напряжение на усилитель. Вход усилителя должен быть замкнут на землю. При первом пуске вольтметр может показать что-то от 0 до 15 мВ. С помощь R16 выставляем необходимый ток покоя. Значение тока покоя вычисляем по формуле: Iпок=U/R. Где, U – показание вольтметра (в вольтах, 1 В = 1000 мВ), R – сопротивление между эмитерами выходников (по схеме = 0.47 Ома). Рекомендую выставлять ток покоя 40 – 80 мА, что соответствует показаниям милливольтметра 19-38 мВ. При первом включении сопротивление R16 должно быть максимальным.

Выставление «нуля» на выходе усилителя. Подключаем между выходом и землей милливольтметра постоянного тока и вращая движок подстроечного резистор R3 добиваемся нулевого значения постоянного напряжения на выходе. Регулировку так же проводим при закороченном на землю входе. При первом включении движок подстроечного резистора R3 должен находится в среднем положении.

Печатные платы. Существует несколько вариантов печатных плат. Первый — авторский:

Именно с усилителя построенного на авторской печатной плате снимались технические характеристики. Этот вариант печатной платы присутствует во вложении к статье.

Второй вариант был разработан товарищем с ником «Лепёхин». Этот вариант разводки так же присутствует в архиве со статьей. Позже этот вариант ПП был изменен товарищем под ником «Gora» и теперь этот окончательный вариант ПП производится в заводских условиях и все желающие могут приобрести заводскую плату для постройки усилителя «Оплеуха Микрухам 2.0». Фотография заводской платы ниже:

Фотографии готового усилителя:

Благодарю всех кто принимал участие в обсуждении усилителя на форуме сайта «Паяльник».

Особую благодарность хочу выразить Лепёхину за разработку правильной разводки для усилителя, а так же Gora за то, что он взял на себя заводское производство плат для данного усилителя.

Так же хотелось бы поблагодарить всех кто собрал мой усилитель, всех кому не равнодушно мое творчество, спасибо всем!

Ниже вы можете скачать печатные платы в формате LAY

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
VT1, VT4, VT8Биполярный транзисторBC556B3Поиск в магазине ОтронВ блокнот
VT2, VT5Биполярный транзистор BC546B2Поиск в магазине ОтронВ блокнот
VT3, VT6Биполярный транзистор BC337-402Поиск в магазине ОтронВ блокнот
VT7Биполярный транзистор 2SB649A1Поиск в магазине ОтронВ блокнот
VT9Биполярный транзистор BD1391Поиск в магазине ОтронВ блокнот
VT10Биполярный транзистор 2SD669A1Поиск в магазине ОтронВ блокнот
VT11Биполярный транзистор 2SC47931Поиск в магазине ОтронВ блокнот
VT12Биполярный транзистор 2SA18371Поиск в магазине ОтронВ блокнот
VT13Биполярный транзистор 2SC52001Поиск в магазине ОтронВ блокнот
VT14Биполярный транзистор 2SA19431Поиск в магазине ОтронВ блокнот
C1, С7, С18, С20Конденсатор1 мкФ4C1 — EpcosПоиск в магазине ОтронВ блокнот
C2Конденсатор47 мкФ1Поиск в магазине ОтронВ блокнот
C3Конденсатор470 пФ1Поиск в магазине ОтронВ блокнот
C4Конденсатор220 пФ1Поиск в магазине ОтронВ блокнот
С5, С6Конденсатор22 пФ2Поиск в магазине ОтронВ блокнот
С8, С17, С19Конденсатор100 нФ3Поиск в магазине ОтронВ блокнот
С9, С10, С12, С13, С15, С16, С21, С22Электролитический конденсатор470 мкФ8Поиск в магазине ОтронВ блокнот
С11, С14Конденсатор22 нФ2Пленочные, не полярныеПоиск в магазине ОтронВ блокнот
R1, R24Резистор 47 кОм2Поиск в магазине ОтронВ блокнот
R2, R51.5K2Поиск в магазине ОтронВ блокнот
R3Резистор 220 Ом1ПодстроечныйПоиск в магазине ОтронВ блокнот
R4, R10-R12Резистор 100 Ом4Поиск в магазине ОтронВ блокнот
R6Резистор 4.7 кОм1Поиск в магазине ОтронВ блокнот
R7Резистор 22 кОм1Поиск в магазине ОтронВ блокнот
R8Резистор 120 Ом1Поиск в магазине ОтронВ блокнот
R9, R14Резистор 1 кОм2Поиск в магазине ОтронВ блокнот
R13Резистор 10 Ом1Поиск в магазине ОтронВ блокнот
R15Резистор 2.2 кОм1Поиск в магазине ОтронВ блокнот
R16Резистор 1 кОм1ПодстроечныйПоиск в магазине ОтронВ блокнот
R17, R22Резистор 47 Ом2Поиск в магазине ОтронВ блокнот
R18, R19Резистор 22 Ом2Поиск в магазине ОтронВ блокнот
R20, R25Резистор 100 Ом2Поиск в магазине ОтронВ блокнот
R21, R23Резистор 3.3 Ом2Поиск в магазине ОтронВ блокнот
R26-29Резистор 0.47 Ом42 ВтПоиск в магазине ОтронВ блокнот
R3010 Ом12 ВтПоиск в магазине ОтронВ блокнот
Добавить все

Прикрепленные файлы:

  • mark2_2012.rar (138 Кб)

Теги:

  • Sprint-Layout
  • УНЧ

ТУТ ВИДЕО

Совсем не дурно, почти hi-end! На самом деле если ориентироваться только по КНИ, то этот усилитель полноценный HI-END, но для хай-энда этого не достаточно, поэтому его отнесли к старому и доброму разряду hi-fi. Несмотря на то, что усилитель развивает всего 100 ватт, он на порядок сложнее аналогичных схем, но сама сборка не составит труда при наличии всех компонентов. Отклонять номиналы схемы не советую — мой опыт это подтверждает.

Маломощные транзисторы в ходе работы могут перегреваться, но волноваться не стоит — это их нормальный режим работы. Выходной каскад, как уже сказал, работает в классе АВ, следовательно, выделятся огромное количество тепла, которое нужно отводить. В моем случае они укреплены на общий теплоотвод, которого более, чем достаточно, но на всякий случай, имеется также и активное охлаждение.

После сборки нас ждет первый запуск схемы. Для этого советую еще раз прочитать запуск и настройку Ланзара — тут все делается точно таким же образом. Первый запуск делаем с закороченной на землю входом, если все ОК, то размыкаем вход и подаем звуковой сигнал. К тому времени все силовые компоненты должны быть укреплены на теплоотвод, а то восхищаясь музыкой можете не заметить, как дымят ключи выходного каскада — каждый из них стоит очень и очень.

Мы наконец заставили достойно звучать наш усилитель домашней аудиосистемы, проверили его работоспособность, оценили качество звука основного канала. Самое время добавить в него модуль защиты от случайных замыканий, чтоб вся работа не пошла лесом, из-за неизбежных случайностей в процессе его эксплуатации. Также соберём остальные маломощные каналы УНЧ, для подключения тыловых колоночек.

Усилитель мощности «Оплеуха Микрухам» Mark II (100 Вт/4 Ом) 2012

Предыстория
. Почему я решил сделать новую ОМ? А потому-то захотелось сделать усилитель для себя, хороший, но не хотелось «городить огород» и изобретать что-то сложное, монстроподобное, поэтому я начал экспериментировать со старой схемой оплеухи с целью получения максимального качества, при минимуме деталей. Наверное, многие с этого форума помнят мой
симметричный усилитель – большой и сложный. Так вот, новая оплеуха, при всей простоте схемы не уступает не на грамм тому симметричному усилку. Сделать сложную схему – просто, а вот сделать качественную схему и при этом отказаться от ведра транзисторов и печатки размеров метр на метр – куда сложней. Поэтому основная цель разработки усилителя была – получить максимальные параметры, при максимальной простоте схемы и это было достигнуто оптимизацией режимов работы каскадов, применением других полупроводников и некоторыми изменениями в схеме.
Схема усилителя

. Схема представляется собой типичного Линна известного еще нашим предкам с давних времен. Особенность схемы не в новизне, которой тут и нет, а в современной элементарной базе и правильно и тонко подобранных режимов работы и правильной коррекции. Все это позволило получить от вполне стандартной схемы очень хорошие характеристики и великолепное звучание.

Технические характеристики усилителя

Ниже привожу основные технические характеристики, большинство из них было измерено с помощью приборов, а скорость нарастания была рассчитана.

Частотный диапазон относительно 10 кГц (-0,1дБ) = 25 – 40000 Гц

Частотный диапазон относительно 10 кГц (-1дБ) = 8 – 125000 Гц

Частотный диапазон относительно 10 кГц (-3дБ) = 4 – 250000 Гц

Максимальная выходная мощность (Нагрузка 8 Ом, 1 кГц) = 97,4 Вт

Максимальная выходная мощность (Нагрузка 8 Ом, 20 кГц) = 96,7 Вт

THD+N (при Pвых<=60 Вт, 20 кГц) <= 0,0009%

THD+N (при максимальной выходной мощности, 1 кГц) = 0,003%

THD+N (при максимальной выходной мощности, 20 кГц) = 0,008%

Макс. скорость нарастания выходного напряжения (для диф.каскада) = 225 В/мкс

Макс. скорость нарастания выходного напряжения (для КУНа) = 187 В/мкс

Диапазон питающих напряжений = +/- 20В … +/- 60В

Номинальное напряжение питания (100 Вт, 4 Ом) = +/- 36В

Номинальное напряжение питания (100 Вт, 8 Ом) = +/- 48В

Элементная база или «из чего собирать?». При сборке любого УМЗЧ следует помнить, что каждый компонент усилителя, каждый конденсатор, транзистор и даже резистор влияет на звучание усилителя и соответственно на конечный результат, поэтому при сборке усилителя следует выбирать наиболее качественные компоненты из доступных. Далее я расскажу некоторые важные моменты касающиеся элементарной базы.

Резисторы

. Все резисторы, кроме дополнительно указанных на схеме, выбираем рассчитанные на мощность 0,25 Вт. Лучше применять металлопленочные резисторы из-за их меньшего шума. Можно применять как советские МЛТ, так и любые их китайские аналоги. Резисторы сильного влияния на звучания не оказывают, но не все… Резисторы в эмиттерах VT13, VT14 могут оказать сильное влияние на звук на высоких мощностях, поэтому в качестве этих резисторов лучше применить что-то по качественней. Не допускается в качестве R26-R29 применять проволочные резисторы из-за их паразитной индуктивности. Стремиться применять высокоточные резисторы (с погрешностью 1% и менее) не нужно, т.к. сильного влияния на конечный результат это не окажет. Допустимо применять резисторы с допуском 10%. Подстроечные резисторы (R3 и R16) следует брать импортные, многооборотные (это облегчит настройку усилителя), такие как на фото усилителя.

Конденсаторы

. Основное внимание необходимо уделить качеству конденсаторов, особенно тем, которые стоят на пути прохождения сигнала (С1 и С2). В роли этих конденсаторов лучше выбрать наиболее качественное из возможных. В качестве С1 лучше применять конденсаторы фирмы Epcos. Можно применять конденсаторы производства СССР типа МБМ, К78-19, К71-7 или (что хуже) К73-17, либо его китайский аналог (коричневый такой, вы наверняка его видели). Не допускается применений в качестве С1 керамического конденсатора. В качестве С2 лучше применить не полярный электролит, но можно и полярный (что хуже). С2 лучше выбрать так же от известной фирмы например Samwha, но можно применять и не дорогие полярные и не полярные электролиты. Стоит избегать электролитов фирм Elzet, Chang и других китайских «брендов». Не в коем случае нельзя применять электролиты производства СССР, т.к. они уже давно высохли и не могут обеспечить своих параметров. Конденсаторы С7 и С8 необходимо так же применять по возможности более качественные, но к ним можно не предъявлять настолько высоких требований как к выбору конденсатора С1. В качестве С7 и С8 не желательно, но все же можно применять керамические конденсаторы. Конденсаторы C3, C4, C5 и C6 желательно найти пленочный, но если это не удастся, то можно применить керамические конденсаторы. Конденсаторы С9, С10, С12, С13, С15, С16, С21, С22 – электролиты, фильтр питания. Их качество особой роли не играет, но опять же стоит избегать левых китайских контор, а так же высохших советских конденсаторов. Напряжения этих конденсаторов необходимо выбирать в соответствии с напряжением питания. Конденсаторы С11, С14, С17, С18, С19, С20 – пленочные, не полярные. Напряжение так же следует выбирать в соответствии с напряжение питания. Их качество так же сильного значения не имеет, но лучше выбрать что-нибудь по лучше.

Транзисторы

. По транзисторам особо нечего говорить. Самое главное правило – это применять то, что указано на схеме и сюрпризов не будет. Не стоит применять транзисторы-аналоги производства СССР, а так же категорически не рекомендуется применять транзисторы KSE340/350 (MJE340/350) – это может привести к самовозбуждению усилителя. При покупке транзисторов следует опасаться поддельных транзисторов.

Некоторые важные моменты по сборке усилителя. Теперь когда с элементарной базой разобрались и определились из чего будем строить усилитель необходимо разобраться с другими не менее важными моментами.

Радиатор

. Усилитель работает в классе AB и поэтому нуждается в очень серьезном охлаждении. Качественной характеристикой радиатора является площадь его поверхно-стей. Для отвода 1 Вт тепла необходимо 15-20 см2 площади радиатора (для алюминия и его сплавов). Необходимую площадь радиатора можно рассчитать по формуле: S=Pвых*(1-КПД)*(15..20), где Pвых – выходная мощность усилителя. Для 100 Вт-ного усилителя площадь радиатора должна находится в пределах: от S=100*(1-0,55)*15=675 см2, до S=100*(1-0,55)*20=900 см2.

Блок питания

. БП можно и нужно рассчитывать с помощью программы PowerSup. Эта программа рассчитает вам необходимую мощность трансформатора, подберет диоды, укажет необходимую емкость фильтра питания и нарисует схему.

Некоторые важные моменты

. Далее просто перечислю, что необходимо учитывать при сборке:

1. Допускается нагрев транзисторов VT7 и VT10 до 60 градусов – это их нормальный режим работы.

2. Транзисторы VT11, VT12, VT13, VT14, VT9 должны быть установлены на ОДНОМ радиаторе.

3. Необходимо пролудить силовые дорожки на плате усилителя (земляную, выходную, дорожки питания и эмиттерные дорожки выходников), остальные дорожки по желанию, но следует помнить что медь со временем будет окисляться.

4. Усилитель необходимо настраивать с закороченным входом и только после 10 минутного прогрева.

5. Усилитель не имеет защиты от КЗ, перегрева и от постоянного напряжения на выходе, поэтому не допускается использование усилителя без дополнительных средств защиты.

6. Блок питания должен обеспечивать низкий уровень пульсаций питающего напряжения и обеспечивать необходимую выходную мощность.

7. При включении усилителя без схемы задержки подключения АС возможен небольшой щелчок при включении.

8. Усилитель собранный на исправных деталях запускается сразу без всяких проблем.

Настройка усилителя

. Вот вы уже и собрали усилитель и возможно вам уже даже удалось «насладиться его звучанием», но чтобы усилитель действительно звучал без кавычек необходимо произвести с ним некоторые действия называемые – настройка. Далее я по пунктам распишу как и что крутить чтобы усилитель запел.

Настройка тока покоя

. Настройку тока покоя следует производить только после 10 минутного прогрева усилителя. Между эмиттерными резисторами VT13 VT14 включаем милливольтметр. Подаем напряжение на усилитель. Вход усилителя должен быть замкнут на землю. При первом пуске вольтметр может показать что-то от 0 до 15 мВ. С помощь R16 выставляем необходимый ток покоя. Сам ток вычисляем по формуле: I(пок.)=U/R , где U – показание вольтметра (в вольтах, 1В=1000 мВ), R – сопротивление между эмиттерами выходников (по схеме = 0.47 Ома). Рекомендую выставлять ток покоя 60 – 130 мА, это соответ-ствует показаниям милливольтметра 30-60 мВ. Регулировка осуществляется с помощью подстроечного резистора R16, при первом включении сопротивление R16 должно быть максимальным. Ток покоя может со временем и в процессе прогрева усилителя изменяться на +/-10% – это нормально.

Выставление «нуля»

на выходе усилителя. Подключаем между выходом и землей милливольтметра постоянного тока и вращая движок подстроечного резистор R3 добиваемся нулевого значения постоянного напряжения на выходе. Регулировку так же проводим при закороченном на землю входе. При первом включении движок подстроечного резистора R3 должен находится в среднем положении. Постоянное напряжение на выходе усилителя может слегка «гулять» (+/-3 мВ) это нормальная ситуация.

Если усилитель не запускается с первого раза. Правильно собранный на исправных деталях усилитель запускается сразу и начинает работать после первого же включения и даже без настройки. Если усилитель после первого включения не работает правильно: постоянное напряжение на выходе, перегрев, дым, самовозбуждение, тут скорее всего ваша вина. Для начала необходимо проверить монтаж, качество пайки, отмыть плату от канифоли или других флюсов. Проверьте все номиналы резисторов на совпадение со схемой, сверьте цоколевку транзисторов. Пользуясь картой напряжений сверьте все режимы работы активных элементов измеряя напряжение в контрольных точках схемы.

Самовозбуждение усилителя и как его устранить. Самовозбуждение – это такое явление при котором усилитель превращается в генератор и сам создает на своем выходе какие-либо колебания. С самовозбуждением необходимо бороться. Признаками самовозбуждения могут быть: повышенный нагрев выходных транзисторов даже без сигнала, писк, треск на выходе усилителя (который слышно в динамике подключенном к усилителю), нагрев резистор R30, повышенный шум в динамике, повышенное потребление тока усилителем. Признаки при самовозбуждении могут присутствовать или все сразу или какой-либо один из них. Чтобы побороть самовозбуждение необходимо увеличить емкость конденсатора C5 до 33 пФ – 47 пФ. Можно так же увеличить емкость конденсатора C4 до 330 пФ. Так же хорошим и точным способом устранения самовозбуждения является увеличение номинала резистора R9 (чем больше номинал резистора, тем меньше вероятность возникновения самовозбуждения, но при этом немного будет ухудшаться качество звука). В крайнем случае, если эти способы не помогут, можно увеличить емкость конденсатора С3 до 510-680 пФ. Этих мер должно быть более чем достаточно чтобы победить любое самовозбуждение усилителя, а если после всех этих манипуляций генерация не пропала, то скорее всего вы сами где-то накосячили: возможно вы не отмыли плату от флюса или канифоли, или у вас левые детали.

Благодарю всех, кто принимал участие в обсуждении усилителя на форуме сайта «Паяльник». Именно благодаря вам и вашей поддержке был разработан этот усилитель. Без вас нечего бы не получилось.

Особую благодарность хочу выразить Лепёхину за разработку правильной разводки для усилителя, а так же Gora за то, что он взял на себя заводское производство плат для моего усилителя.

Так же хотелось бы поблагодарить всех кто собрал мой усилитель, всех кому не равнодушно мое творчество, спасибо вам всем!

FAQ по усилителю, более подробное описание.

Помощь на форуме

Автор проекта: Стельмах Илья (Nem0

)

Почта

Беларусь, Молодечно

2012

ЗАЩИТА АС УМЗЧ

Изначально задумал использовать схему защиты от БРИГ, но затем читая отзывы о симисторной защите захотел попробовать ее. Блоки защиты были сделаны в самом конце, тогда было туго с финансами, а симисторы и прочие компоненты схемы у нас оказались довольно дороги, поэтому вернулся к релейной защите.

В итоге были собраны три блока защиты, один из них для сабвуферного усилителя, а два остальных для каналов ОМ.

В сети можно найти большое количество схем блоков защиты, но эта схема перепробована мной неоднократно. При наличии постоянного напряжения на выходе (выше допустимого) защита мгновенно срабатывает спасая динамическую головку. После подачи питания реле замыкается, а при срабатывания схемы оно должно размыкаться. Защита включает головку с небольшой задержкой — это тоже в свою очередь, является дополнительной страховкой и щелчок после включения, почти не слышен.

Компоненты блока защиты могут отклоняться от указанного, Основной транзистор можно заменить на наш КТ815Г, использовал высоковольтные транзисторы MJE13003 — их у меня навалом, кроме того, они довольно мощные и не перегреваются в ходе работы, поэтому в теплоотводе не нуждаются. Маломощные транзисторы можно заменить на S9014, 9018, 9012, даже на КТ315, оптимальный вариант — 2N5551. Реле на 7-10 Ампер, подобрать можно любое реле на 12 или 24 Вольта, в моем случае на 12 Вольт.

Блоки защиты для каналов ОМ установлены возле трансформатора второго инвертора, работает все это дело довольно четко, при максимальной громкости защита может сработать (ложно) крайне редко.

Почему нельзя сравнивать усилители для наушников с позиции громкости по их мощности?

Мы привыкли к тому, что обычно громче играет тот усилитель, у которого выходная мощность выше в одинаковых условиях (одинаковая нагрузка и сопоставимые искажения). Так почему это правило дает сбой с усилителями для наушников? Как же их сравнивать? Для начала вспомним, что мощность является произведением напряжения на ток и при этом ток зависит от величины напряжения и номинала нагрузки.
W=U*I I=U/R

Мы не можем увеличить мощность, добавляя только ток без изменения напряжения. Другими словами, регулятором громкости мы регулируем только напряжение на выходе усилителя, а ток будет расходоваться в зависимости от сопротивления нагрузки (АС или наушников). Будем увеличивать напряжение — автоматически увеличится и потребление тока.

Любой усилитель имеет предельные характеристики, которые можно выразить виде максимального уровня тока и напряжения для заданных критериев качества. Если мы выставим уровень на выходе, при котором усиленный сигнал уйдет за предельное значение по напряжению, то “верхушки” волны будут обрезаны.
Пример формы волны от iHiFi-100, ограничение несимметричное
Такой вид искажений часто называется как “клиппирование” или “перегрузка”. Но может быть и такая ситуация, когда предельное напряжение не превышено, но потребление тока на нагрузке (колонках или наушниках) выше, чем может отдать усилитель. Как итог, мы получаем аналогичные искажения звука.


Ограничение по току у Audiolab M-DAC на низкоомной нагрузке. Ограничение по верхней части волны “мягкое”, а по нижней “жесткое”.

Так как мощность это произведение тока на напряжение, то при равной выходной мощности ток и напряжение обратно пропорциональны.

U=W/I, I=W/U

При равной чувствительности к мощности колонок (или наушников), но при разном сопротивлении, для обеспечения равного звукового давления на выходе требуется одинаковая мощность, но разные соотношения тока и напряжения.

Практически все колонки с излучателями динамического типа низкоомные — 4 или 8 Ом. Для такой нагрузки от усилителя в первую очередь важно значение выходного тока, т.к. напряжение требуется относительно небольшое.

Как обычно определяют потенциал усилителя? У кого тяжелее трансформатор и больше емкость конденсаторов в блоке питания, тот и лучше. Хотя это и косвенный показатель, но зачастую достаточно точный.

Музыкальный сигнал не является чистым долговременным синусом, он энергетически на 9-15 дБ «тише» за счет неравномерной амплитуды по времени. Если мы к примеру измерили мощность в 10 Вт (4 Ом, 6.3 Vrms, 1.5 А), то реально среднее потребляемое значение будет 3.5 Вт (при энергетической плотности на 9 дБ ниже). Таким образом, если мы поднимем громкость на 9 дБ, то по значению напряжения на музыкальном сигнале будут реальные 10 Вт. Вид волны для синуса и музыкального сигнала
На картинке показаны закрашенные площади для синуса и музыкального сигнала. Соотношение площадей такое же, как и соотношения потребляемого тока при равной амплитуде по напряжению.

Если в блоке питания не будет достаточной емкости, то в моменты кратковременной бОльшей мощности мы получим искажения в звуке от клиппирования по току. Но, при достаточной емкости в питании, усилитель получит необходимую мощность. Именно по этой причине часто обращают пристальное внимание на емкость конденсаторов. Усилитель с емкими конденсаторами по факту будет мощнее, хотя в тесте на синусах по мощности (долговременной) будет равен усилителю с меньшей емкостью конденсаторов в питании.

Другой, более важный момент, если у усилителей одинаковое ограничение по напряжению, например 5 Vrms, то на синусе при нагрузке в 4 Ом будет потребление тока в 1.25 А, а на музыкальном при плотности на 9 дБ ниже — 0.4 А. Допустим, у двух усилителей для 4 Ом заявлены мощности как 6 Вт (5 Vrms, 1.2 А ) и 4 Вт (5 Vrms, 0,8 А). Как видно, у первого усилителя мощность на синусе выше, но на музыкальном сигнале усилители будут играть с одинаковой громкостью, т.к. максимальное напряжение у них одинаково. Клиппирования из-за недостатка тока не будет, т.к. оба усилителя способны дать более 0.4 А для 4 Ом. Запас по мощности у первого усилителя просто избыточный (вот так и появляются утверждения, что характеристики врут и на них нельзя полагаться).

Разница между синусом и музыкальным сигналом настолько очевидна, что во всех стандартах так или иначе присутствуют рекомендации проводить измерения или указывать конечные данные на сигналах, приближенных к музыкальному. Но ни одна из этих рекомендаций не прижилась. Основная предполагаемая причина — у большинства усилителей запас по напряжению намного выше запаса по току для низкоомной нагрузки.

К примеру, если усилитель без нагрузки может дать 12 Vrms, но под нагрузкой с током в 0,6 А мы получим клиппирование уже при 2,4 Vrms на 4 Ом на синусе и на 6.7 Vrms на музыкальном сигнале. До ограничения по напряжению мы просто не дойдем.

У потребителя простой вопрос, что играет громче, и ранжирование по мощности в большинстве случаев дает верный ответ, т.к в пересчете на напряжение и ток, ограничивающим фактором будет только ток. Если мы и пересчитаем мощности в «ток + напряжение», то мы банально сделаем лишние расчеты, а ответ будет тем же.

Более того, сравнивая значения мощности, напряжения и тока мы не получаем ответа “насколько громче”, т.к. такой ответ содержится лишь в единицах, выраженных в децибелах. Например, по мощности три усилителя будут расставлены так: 10 Вт, 20 Вт и 30 Вт. Но по громкости, усилитель с мощностью в 20 Вт будет ли посередине? В единицах, выраженных в дБ мощности будут выглядеть как: 10 dBW, 13 dBW и 14,7 dBW. Соотношения как -3/0/1,7 дБ. Таким образом, усилитель с мощностью в 20 Вт будет гораздо ближе к усилителю в 30 Вт.

Возможно, если бы развитие компьютеров произошло раньше, а авторы глянцевых журналов и читатели умели считать логарифмы, то мы бы видели не абстрактные значения мощности усилителей, а конкретные значения звукового давления на выходе конкретных колонок и усилителей. Но увы, это было слишком сложно, хотя и давало бы более точный ответ.

Но вернемся к главному — упрощение ранжирования усилителей по громкости от мощности не приводило к противоречиям (особенно для бюджетных усилителей), т.к. ограничивающим фактором был в основном ток. А вот с усилителями для наушников проблема встала в полный рост.

Распространенные сопротивления наушников находятся в диапазоне от 16 до 300 Ом. Для низкоомных наушников ограничивающим параметром будет ток, а для высокоомных — напряжение. Дополнительно для низкоомных наушников по току будет запас как минимум в 9-15 дБ.

Если у усилителя для колонок типовых нагрузок было всего две, 4 и 8 Ом (и соответственно два значения уровня мощности), то для усилителя наушников таких типовых сопротивлений порядка 8-ми: 8, 16, 24, 32, 60, 100, 200, 300 и 600 Ом. В лучшем случае производители указывают значение мощности для двух номиналов.

Неподготовленные пользователи не всегда замечают, что у разных усилителей мощность указана к разным нагрузкам и сравнивать мощности 0,5 Вт@32 Ом и 0,3 Вт@300 Ом нельзя.

Если построить график выходного напряжения для усилителя, то он примет такой вид.


По горизонтальной оси — сопротивление нагрузки (АС или наушников). По вертикали, напряжение, слева в Vrms (привычных многим), а справа в dBV. dBV — это значение напряжения в децибелах, где за 0 дБ взят 1 Vrms. В этих единицах давно указывают напряжение для профессиональной техники, т.к. регулировка уровней производится в дБ. В нашем же случае это удобно за счет прямого сравнения по громкости сразу в дБ.
Голубая прерывистая линия — это ограничение по напряжению. В примере это 0 dBV или 1 Vrms. Для простоты примера выходное сопротивление усилителя равно 0 Ом и эта линия строго горизонтальна.

Красная линия, это значение напряжения при выходном токе в 10 мА (по формуле U = I*R).

Черная линия — это результат по ограничениям тока и напряжения. Если значения напряжения пересчитать в мощность, мы получим 1.6 мВт (при -16 dBV) для 16 Ом и 3.3 мВт (0 dBV) для 300 Ом.

Соотношения мощностей дают разницу в 3 дБ (10*Log10(W1/W2) = 10*Log10(3.3/1.6) = 3 дБ). Рассмотрим пример с наушниками с чувствительностью в 100 дБ/мВт при оценке по графику напряжения:

Если у нас будут наушники с чувствительностью в 118 дБ/В SPL (100 дБ/мВт) на 16 Ом, то для них максимальное звуковое давление будет равно как -16 dBV + 118 дБ/В SPL = 102 дБ SPL. Для наушников с чувствительностью 105 дБ/В SPL (100 дБ/мВт) на 300 Ом звуковое давление будет равно как 0 dBV + 105 дБ/В SPL = 105 дБ SPL. Разница в громкости между наушниками, подключенных к этому усилителю будет равна 105 дБ SPL — 102 дБ SPL = 3 дБ, где высокоомная модель будет играть громче.

Математически все это хорошо для синуса. Но для музыкального сигнала расчет уже будет другим.

Так как энергетическая плотность сигнала ниже как минимум на 9 дБ, то ограничение по току будет по зеленой прерывистой линии, которая выше соответственно на 9 дБ. Соотношения напряжения уже будут другими.

Для 16 Ом:

  • Для синуса у нас останется значение в -16 dBV.
  • Для музыкального сигнала значение уже будет на 9 дБ выше, равное -7 dBV, а “музыкальная” мощность уже должна быть не 1,6 мВт, а 12 мВт!
  • Если забыть про качество (при превышении уровня тока мы получим искажения) или если энергетическая плотность сигнала будет еще ниже — то значение может достигнуть и 0 dBV.

Для 300 Ом ничего не изменится, т.к. там ограничение лишь по напряжению. Для примера выше для музыкального сигнала наушники с чувствительностью в 118 дБ/В на 16 Ом дадут звуковое давление как -7 dBV + 118 дБ/В SPL = 111 дБ SPL. И разница между низкоомной и высокоомной моделью станет 111дБ SPL — 105 дБ SPL = 6 дБ, где громче уже будет низкоомная модель.
А если просто вывернуть ручку громкости на максимум и не обращать внимание на качество (хрип от клиппирования), то разница между наушниками будет в 13 дБ в пользу низкоомной модели.

Если мы будем смотреть амплитуды, запас по току менее 9 дБ, то соответственно максимальный уровень напряжения будет оставаться на уровне 0 dBV. В примере выше реальная прибавка получилась как 6 дБ.

Что будет, если мы будем сравнивать усилители с одинаковой выходной мощностью?


Добавим второй усилитель с заявленной мощностью в 3 мВт на 32 Ом и 3.3 мВт на 300 Ом. Наш первый усилитель в примере обладает точно такой же мощностью на 32 и 300 Ом.

У второго усилителя максимальное напряжение 2.3 dBV (1.3 Vrms), выходное сопротивление 100 Ом и выходной ток в 100 мА. Из-за не нулевого сопротивления ограничение по напряжению не является прямой горизонтальной линией, а представляет собой кривую с уменьшением напряжения в область низкоомной нагрузки.

Как видно на графике, пурпурная линия пересекается с черной на 32 и 300 Ом. Запас по току настолько большой (пурпурная прерывистая линия), что не оказывает влияния на максимальные значения.

По графику выше видно, что для первого усилителя для 32 Ом есть запас на 9 дБ, т.к. это позволяет максимальное значение по напряжению. Для второго усилителя при большем запасе по току максимальное напряжение не позволяет получить “музыкальную” мощность больше, чем она получена для синуса.

Таким образом, формально усилители обладают одинаковой мощностью, но на практике первый усилитель на наушниках в 32 Ом даст громкость на 9 дБ выше с аналогичным качеством.

Какие глобальные выводы из этого можно сделать? Сравнивать усилители просто по мощности некорректно, несмотря на то, что это привычно и более-менее адекватно для усилителей АС.

Развитие отчетов в RAA всегда было направлено не на максимальное количество графиков, а на возможность сравнения продуктов. И при сравнении получение практических ответов, а не абстрактных.

Оперирование чувствительности к мощности и график мощности оказались менее удобны для быстрого сравнения, чем например сравнение чувствительности к напряжению и соответственно графики напряжения.

Тем не менее, график напряжения, построенный по синусу оказался недостаточно точным для сравнения громкости между усилителями. Как итог работы, был добавлен улучшенный вид графика напряжения к “музыкальной” мощности. Этот график добавился в отчеты и различные он-лайн сервисы и сравнения.

Сравнение графиков мощностных характеристик усилителей и определение необходимого уровня напряжения для наушников от усилителя

Ссылка В этом сервисе можно сравнить усилители по громкости, причем в рамках определенных классов качества. Если выбрать эквивалентный класс А — то это будет сравнение в предположительно максимальном качестве усилителей. А если выбрать “No current limit” — будет просто сравнение громкости без учета качества.
По умолчанию энергетическая плотность сигнала установлена на 12 дБ ниже плотности синуса. Обычно плотность музыкального сигнала отличается от 9 до 15 дБ. При желании можно задать иную плотность. Если выбрать 3 дБ и отображение “Point On”, то получится график, построенный по синусу с исходными значениями.


Для анализа уровней к определенной нагрузки можно задать сопротивление наушников, и в дополнительной таблице будут искомые значения в dBV.

В этом сервисе есть и другие интересные и полезные алгоритмы, но они выходят за рамки данной темы.

Сравнение усилительной части по громкости

Ссылка
Это упрощенный вариант в виде таблицы, где можно задать два варианта сопротивления и посмотреть на амплитуды в дБ. Аналогично можно выбрать эквивалентный класс качества. Дополнительно приведены и значения в мощности для синуса. При сортировке можно увидеть, что значения мощности могут заметно отличаться при одинаковых значениях напряжения из-за учета энергетической плотности сигнала.

Калькулятор определения базовых характеристик усилителя

Несомненно, у многих невольно возникнет вопрос, а как быть со сравнением тех устройств, которые не измерялись в RAA? Как высчитывать напряжение и ток? Как построить график?
Для этого готовится отдельный калькулятор, в который можно будет вводить известные данные об устройстве и получить на выходе конечные значения.

Калькулятор не простой, т.к. порой данные от производителей неполные и нужно вычислить вероятный диапазон возможных значений. Например производитель может указать мощность для одной нагрузки и максимальный уровень напряжения без нагрузки. Без указания выходного сопротивления может быть несколько вариантов графика. Прорабатываются разные сочетания указанных данных.

Итог

Для сравнения усилительной части по громкости надо учитывать энергетическую плотность музыкального сигнала и отдельно ограничения по току и напряжению.

МАЛОМОЩНЫЕ УСИЛИТЕЛИ

Долго решал какой усилитель использовать для маломощных акустических систем. Как дешевый вариант вначале решил использовать микросхемы TDA2030, потом подумал, что 18-ти ватт на канал маловато и перешел к TDA2050 — умощненный аналог на 32 ватта. Затем сравнив звучание основных вариантов выбор впал на любимую микросхему — LM1875, 24 ватта и качество звучания на 2-3 порядка лучше, чем у первых двух микросхем.

Долго копался в сети, но печатную плату под свои нужды так и не нашел. Сидя за компом несколько часов была создана своя версия для пятиканальноо усилителя на микросхемах LM1875, плата получилась довольно компактной, на плате также предусмотрен блок выпрямителей и фильтров. Этот блок был полностью собран за 2 часа — все компоненты к тому времени имелись в наличии.

ВИДЕО УСИЛИТЕЛЯ

Качество звучания этих микросхем на очень высоком уровне, в конце концов разряд Hi-Fi, отдаваемая мощность приличная — 24 ватта синуса, но в моем случае мощность повышена путем повышения питающего напряжения до 24-х вольт, в таком случае можно получить порядка 30 ватт выходной мощности. На основной плате усилителя у меня было предусмотрено место для 4-х канального усилителя на TDA2030, но чем-то оно мне не понравилось…

Плата для LM крепится на основную плату УНЧ через стойки в виде трубок и болтов. Питание для этого блока берется со второго инвертора, предусмотрена отдельная обмотка. Выпрямитель и фильтрующие конденсаторы расположены непосредственно на плате усилителя. В качестве выпрямительных диодов уже традиционные КД213А. Дросселей для сглаживания ВЧ помех не использовал, да и нет нужды их применять, поскольку даже в довольно брендовых автомобильных усилителях их часто не ставят. В качестве теплоотвода использовал набор дюралюминиевых болванок 200х40х10 мм.

На плату также укреплен кулер, который одновременно отводит теплый воздух с этого блока и отдувает теплоотводы инверторов. С электроникой аудиокомплекса полностью разобрались — переходим к механике и слесарным работам…

Основа любой радиолюбительской конструкции — красивый удобный корпус, тем более он должен прилично смотреться у аппарата, который занимает достойное место в гостинной или вашем рабочем кабинете.

КОРПУС И МОНТАЖ

С корпусом мучился особо долго, пока в один прекрасный день пришел ко мне один незнакомец. В руках у него было устройство, похожее на старый усилитель мощности. Человек представился и начал беседу. Оказалось что знал он меня отлично и принес ненужную ему вещицу, чтобы обменять на бесперебойник. Бесперебойник ему не дал, но уговорил продать устройство за 400 рублей. Недолго думая, он согласился. Устройство из себя представляет компрессор от компании TESLA, находился вполне рабочем состоянии, но от него мне был нужен только корпус, который как раз подходил для усилительного комплекса.

ВИДЕО — САМОДЕЛЬНЫЙ УСИЛИТЕЛЬ

Трансформаторы были укреплены на плату с помощью особо прочного клея «момент», дополнительно прижал их к плате металлическими шайбами (с резиновой прокладкой, чтобы не зажать обмотки), которые пришлось покрасить в черный цвет, чтобы не бросались в глаза. Шайбы укреплены болтами с длиной 40 мм и диаметром 4 мм.

Шины питания — отняли почти 5 дней. Долго не решался как их провести, из какого материала и какой формы делать. Пробовал многое — алюминий, нержавейку (шины нужного сечения были в наличии только из указанных металлов). Оба варианта не устраивали, слишком много потерь, даже шины с сечением порядка 12 мм перегревались, в случае нержавейки — большое сопротивление участка использованной шины, за 5 минут работы инверторов шина нагревалась так сильно, что на ней можно было спокойно воду вскипятить, в итоге потери только в шинах — скромные 10 Ампер… В результате был куплен толстый многожильный провод с сечением 16 мм и каждый инвертор подключен к основным контактным шинам через такой кабель. Сечение этого провода более, чем достаточно, разумеется можно обойтись и более тонким, но сделал с запасом, так сказать на всякий случай.

Кабель подключается к распределительным шинам (таких шин две) — это сделано для удобства монтажа. Через распределительную шину подается силовой плюс на каждый инвертор. Распределительные шины сделаны из латуни, укрепляются на основную плату болтом и клеем момент (опять же, для страховки).

Теплоотводы взял от какого-то отечественного усилителя, после первого запуска, стало ясно, что их не хватит для такого монстра, ведь все выходные каскады усилителей укрепляются именно на этот теплоотвод. Именно поэтому решил добавить активное охлаждение в виде кулера.

Теплоотвод маломощных усилителей изначально думал вывести наружу, но потом нашел на чердаке дюралюминиевые болванки и решил из них делать теплоотвод. Болванки к счастью имели резьбу и с их стыковкой проблем не возникло. Готовый теплоотвод укреплен к шасси усилителя. На плате маломощных усилителей установлен кулер, но не для отвода тепла с радиаторов этого блока, а для охлаждения силовых ключей инвертора и выпрямительных диодов. В ходе работы на малую мощность, теплоотводы инверторов холодные, но на больших мощностях они довольно сильно перегреваются, поскольку усилители потребляют до 700 ватт, немалая часть мощности утрачивается превращаясь в ненужное тепловыделение на транзисторах.

Изначально думал собрать простенький корпус, поскольку сам усилитель планировался для авто. Уже в конце работ задумывался над оформлением всерьез и все, что получилось — это полностью авторские решения. Смесь бронзового и золотистого карбона, фирменный логотип и оформление передней панели — все это сделано вручную. Регулятор громкости состоит из трех основных частей, регуляторы блока ФНЧ изначально задумал вывести наружу, но немного подумав, понял, что портится дизайн передней панели, поэтому их заранее настроил по вкусу, чтоб больше не пришлось открывать корпус. Частота среза примерно 70 Гц, громкость на максимум — вот и все.

Латунные шины на плате сделал для удобства монтажа, чтоб не пришлось отпаивать основные шины питания когда нужно будет достать плату. Изначально думал, что шин питания будет мало, но потом, когда усилитель был на последнем этапе работ, то понял, что проводов будет больше, чем планировал. Чтобы не портить вид внутреннего монтажа, решил использовать провода с одинаковым цветом изоляции. Почти все многожильные провода использовал с сечением 2,5 мм, для их крепежа использовал специальные полоски с защелкой, пачка таких монтажных полосок стоит доллар, одной пачки с головой хватило на весь проект (100 шт).

Все силовые части усилителей были укреплены на основной теплоотвод через слюдяные прокладки, чтобы не бурить отверстие под каждый транзистор, решил использовать общие пластины из стали, которые прикреплены к теплоотводы всего одним шурупом. Такой метод довольно хорошо прижимает транзисторы к теплоотводу, к тому же, не дай БОГ, при поломках удобно будет работать с выходными каскадами.

И в заключительной части, мы увидим как корпус выглядит снаружи, подсчитаем расходы на создание домашнего усилителя, а также подведём итоги работы.

ИТОГОВЫЕ ЗАТРАТЫ НА КОМПЛЕКС

О затратах сначала хотел промолчать, но думаю многим интересно сколько было потрачено в итоге. указана суммарная стоимость определенного компонента (к примеру irfz44 (8 шт) — 12 $ — общая цена на все транзисторы).

Начнем с инверторов

  • Кольца (4шт) — 8$
  • IRFZ44 (4шт) — 8$
  • IRF3205 (4шт) -10$
  • BC556 (4шт) — 2$
  • BC546 (2шт) — 1$
  • КД213 (8шт) — 10$
  • TL494 (2шт) 1$
  • Резисторы 3$
  • Конденсаторы пленочные — 4$
  • Конденсаторы электролитические — 12$

УСИЛИТЕЛЬ ЛАНЗАР

  • 2SA1943 2шт — 8$
  • 2SC5200 2шт — 8$
  • 2SB649 2шт — 2$
  • 2SD669 2шт — 2$
  • 2N5401 2шт — 1$
  • 2N5551 2шт — 1$
  • Резисторы 5ватт — 4 шт — 3$
  • Остальные резисторы — 4$
  • Конденсаторы неполярные — 3$
  • Конденсаторы полярные — 5$
  • Стабилитроны — 2шт — 2$

УСИЛИТЕЛИ ОМ

  • 2SA1943 2шт — 8$
  • 2SC5200 2шт — 8$
  • Остальные транзисторы — 10$
  • Конденсаторы 10$

БЛОК ФИЛЬТРОВ

  • TL072 1шт -1$
  • TL084 1шт — 1$
  • Конденсаторы неполярные — 3$
  • Резисторы — 2$
  • Регуляторы 3шт — 4$

БЛОК СТАБИЛИЗАЦИИ

  • Транзисторы 2$
  • Стабилитроны 13 вольт 6шт — 1,5$
  • Стабилизаторы 7815 2шт — 1,5$
  • Стабилитроны 7915 1шт — 0,7$
  • Остальное — 2$

БЛОК ЗАЩИТЫ

  • Транзисторы — 2$
  • Реле — даром
  • Остальное -1$
  • Штекеры, гнезда и разъемы — даром.

УСИЛИТЕЛИ НА LM1875

  • LM1875 — 5 шт — 18$
  • Диоды КД213А 4шт 5$
  • Остальное 3$

ПРОЧЕЕ

  • Клей момент (особо прочный) 2 флакона — 4$
  • Эпоксидная смола 1 флакон — 3$
  • Горячий клей (термоклей) 3 палочки 1$
  • Термопаста 1 флакон — 3$
  • Саморезы, шурупы и болты 3$
  • Шины (латунные) 2 штуки 4$
  • Шины питания 2$
  • Провод 16мм (1 метр) 2,5$
  • Провод одножильный 6мм (2 метр) 2$
  • Тюльпаны, разъемы для головок — 5$
  • Теплоотводы — даром
  • Фольгированный стеклотекстолит — 10$
  • Реагенты для травления — 5$
  • Корпус — 20$
  • Карбон — 10$
  • Кулер (2 штуки) — 7$

ИНСТРУМЕНТЫ ДЛЯ СБОРКИ

Большинство инструментов советского образца. Киловаттная дрель 70-х годов, который не обменяю даже на самый дорогой электроинструмент, он верой и правдой служил моему отцу и перешел по наследству, 40 лет живет у нас дома, работаю с ним очень часто и еще ни разу не подводил и не ломался — респект и поклон инженерам, которые делали его. Ножовка — тоже советского образца, помогла во многом.

Паяльник — заменил два паяльника, пока собирал усилитель, в итоге использовал паяльник на 25 ватт — для пайки мелких компонентов, паяльник на 60 ватт — для пайки компонентов с толстыми выводами и монстр на сотню ватт — им лудил дорожки, припаивал шины питания и многое другое.

Кусачки, нож канцелярский, ножницы (было их у меня 2 штуки, для проводов и пластика). Набор отверток, пинцеты (маленький, средний и большой), плоскогубцы — в общем именно с их помощью, удалось довести дело до конца.

С учетом всех мелких компонентов на комплекс было потрачено порядка 300 долларов США и 4 месяца кропотливых работ, кто-то сейчас подумает — а зачем это нужно, ведь за 300$ можно готовый усилитель купить. Может и так, но этот усилитель гораздо мощнее и лучше любого УМЗЧ потребительского класса — сравнивал со многими моделями, в том числе magnad, xplod, ivolga. Второе — это полностью ручная работая, каждый припой, каждый шуруп — все сделано вручную, в конце концов оригинальный авторский дизайн, который больше напоминает оформление дорогих ламповых усилителей, и на данный момент данный УНЧ — самое дорогое для меня устройство в доме.

схемопедия

FAQ

Руководство по сборке и настройке усилителя

Разработал:

Стельмах Илья [Nem0]

Январь 2012

Предыстория.

Почему я решил сделать новую ОМ? А потому-то захотелось сделать усилитель для себя, хороший, но не хотелось «городить огород» и изобретать что-то сложное, монстроподобное, поэтому я начал экспериментировать со старой схемой оплеухи с целью получения максимального качества, при минимуме деталей. Наверное, многие с этого форума помнят мой симметричный усилитель – большой и сложный.. Так вот, новая оплеуха, при всей простоте схемы ни на грамм не уступает тому симметричному усилку. Сделать сложную схему – просто, а вот сделать качественную схему и при этом отказаться от ведра транзисторов и печатки размеров метр на метр – куда сложней. Поэтому основная цель разработки усилителя была – получить максимальные параметры, при максимальной простоте схемы и это было достигнуто оптимизацией режимов работы каскадов, применением других полупроводников и некоторыми изменениями в схеме.

Схема усилителя.

Схема представляется собой типичного Линна известного еще нашим предкам с давних времен. Особенность схемы не в новизне, которой тут и нет, а в современной элементарной базе и правильно и тонко подобранных режимов работы и правильной коррекции. Все это позволило получить от вполне стандартной схемы очень хорошие характеристики и великолепное звучание. А вот и сама схема:

Технические характеристики усилителя.

Ниже привожу основные технические характеристики, большинство из них было измерено с помощью приборов, а скорость нарастания была рассчитана.

Частотный диапазон относительно 10кГц (-0,1дБ) = 25 – 40 000 Гц

Частотный диапазон относительно 10кГц (-1дБ) = 8 – 125 000 Гц

Частотный диапазон относительно 10кГц (-3дБ) = 4 – 250 000 Гц

Максимальная выходная мощность (Нагрузка 8Ом, 1кГц) = 97,4 Вт

Максимальная выходная мощность (Нагрузка 8Ом, 20кГц) = 96,7 Вт

THD+N (при Pвых<=60Вт, 20кГц) <= 0,0009%

THD+N (при максимальной выходной мощности, 1кГц) = 0,003%

THD+N (при максимальной выходной мощности, 20кГц) = 0,008%

Максимальная скорость нарастания выходного напряжения (для диф.каскада) = 225 В/мкс

Максимальная скорость нарастания выходного напряжения (для КУНа) = 187 В/мкс

Диапазон питающих напряжений = +/- 20В … +/- 60В

Номинальное напряжение питания (100Вт, 4 Ом) = +/- 36В

Номинальное напряжение питания (100Вт, 8 Ом) = +/- 48В

Элементарная база или «из чего собирать?».

При сборке любого УМЗЧ следует помнить, что каждый компонент усилителя, каждый конденсатор, транзистор и даже резистор влияет на звучание усилителя и соответственно на конечный результат, поэтому при сборке усилителя следует выбирать наиболее качественные компоненты из доступных. Далее я расскажу некоторые важные моменты касающиеся элементарной базы.

Резисторы.

Все резисторы, кроме дополнительно указанных на схеме, выбираем рассчитанные на мощность 0,25Вт. Лучше применять металлопленочные резисторы из-за их меньшего шума. Можно применять как советские МЛТ, так и любые их китайские аналоги. Резисторы сильного влияния на звучания не оказывают, но не все.. Резисторы в эммитерах VT13, VT14 могут оказать сильное влияние на звук на высоких мощностях, поэтому в качестве этих резисторов лучше применить что-то по качественней. Не допускается в качестве R26-R29 применять проволочные резисторы из-за их паразитной индуктивности. Стремиться применять высокоточные резисторы (с погрешностью 1% и менее) не нужно, т.к. сильного влияния на конечный результат это не окажет. Допустимо применять резисторы с допуском 10%. Подстроечные резисторы (R3 и R16) следует брать импортные, многооборотные (это облегчит настройку усилителя), такие как на фото усилителя.

Конденсаторы.

Основное внимание необходимо уделить качеству конденсаторов, особенно тем, которые стоят на пути прохождения сигнала (С1 и С2). В роли этих конденсаторов лучше выбрать наиболее качественное из возможных. В качестве С1 лучше применять конденсаторы фирмы Epcos. Можно применять конденсаторы производства СССР типа МБМ, К78-19, К71-7 или (что хуже) К73-17, либо его китайский аналог (коричневый такой, вы наверняка его видели). Не допускается применение в качестве С1 керамического конденсатора. В качестве С2 лучше применить не полярный электролит, но можно и полярный (что хуже). С2 лучше выбрать так же от известной фирмы, например Samwha, но можно применять и недорогие полярные и неполярные электролиты. Стоит избегать электролитов фирм Elzet, Chang и других китайских «брендов». Ни в коем случае нельзя применять электролиты производства СССР, т.к. они уже давно высохли и не могут обеспечить своих параметров. Конденсаторы С7 и С8 необходимо так же применять по возможности более качественные, но к ним можно не предъявлять настолько высоких требований как к выбору конденсатора С1. В качестве С7 и С8 не желательно, но все же можно применять керамические конденсаторы. Конденсаторы C3,C4,C5 и C6 желательно найти пленочный, но если это не удастся, то можно применить керамические конденсаторы. Конденсаторы С9, С10, С12, С13, С15, С16, С21, С22 – электролиты, фильтр питания. Их качество особой роли не играет, но опять же стоит избегать левых китайских контор, а так же высохших советских конденсаторов. Напряжения этих конденсаторов необходимо выбирать в соответствии с напряжением питания. Конденсаторы С11, С14, С17, С18, С19, С20 – пленочные, не полярные. Напряжение так же следует выбирать в соответствии с напряжение питания. Их качество так же сильного значения не имеет, но лучше выбрать что-нибудь по лучше.

Транзисторы.

По транзисторам особо нечего говорить. Самое главное правило – это применять то, что указано на схеме и сюрпризов не будет. Не стоит применять транзисторы-аналоги производства СССР, а так же категорически не рекомендуется применять транзисторы KSE340/350 (MJE340/350) – это может привести к самовозбуждению усилителя. При покупке транзисторов следует опасаться поддельных транзисторов, фотографии оригинальных изделий привожу ниже.

2SC5200/2SA1943

2SC4793/2SA1837

2SD669/2SB649

BC546B/BC556B

BC337

Некоторые важные моменты по сборке усилителя.

Теперь когда с элементарной базой разобрались и определились из чего будем строить усилитель необходимо разобраться с другими не менее важными моментами.

Радиатор.

Усилитель работает в классе AB и поэтому нуждается в очень серьезном охлаждении. Качественной характеристикой радиатора является площадь его поверхностей. Для отвода 1Вт тепла необходимо 15-20см2 площади радиатора (для алюминия и его сплавов). Необходимую площадь радиатора можно рассчитать по формуле: S=Pвых*(1-КПД)*(15..20), где Pвых – выходная мощность усилителя. Для 100Вт’ного усилителя площадь радиатора должна находится в пределах: от S=100*(1-0,55)*15=675см2, до S=100*(1-0,55)*20=900см2. Подробно о радиаторах можно почитать тут, а программу для расчета радиатора .

Блок питания.

БП можно и нужно рассчитывать с помощью программы Power Sup (). Эта программа рассчитает вам необходимую мощность трансформатора, подберет диоды, укажет необходимую емкость фильтра питания и нарисует схему. Как работает программа описано тут.

Некоторые важные моменты.

Далее просто перечислю что необходимо учитывать при сборке:

  1. Допускается нагрев транзисторов VT7 и VT10 до 60 градусов – это их нормальный режим работы.
  2. Транзисторы VT11, VT12, VT13, VT14, VT9 должны быть установлены на ОДНОМ радиаторе.
  3. Необходимо пролудить силовые дорожки на плате усилителя (земляную, выходную, дорожки питания и эммитерные дорожки выходников), остальные дорожки по желанию, но следует помнить что медь со временем будет окисляться.
  4. Усилитель необходимо настраивать с закороченным входом и только после 10 минутного прогрева.
  5. Ток покоя может плавать с течением времени на 10-20% – это в пределах нормы.
  6. Усилитель не имеет защиты от КЗ, перегрева и от постоянного напряжения на выходе, поэтому не допускается использование усилителя без дополнительных средств защиты.
  7. Блок питания должен обеспечивать низкий уровень пульсаций питающего напряжения и обеспечивать необходимую выходную мощность.
  8. При включении усилителя без схемы задержки подключения АС возможен небольшой щелчок при включении.
  9. Усилитель собранный на исправных деталях запускается сразу без всяких проблем.

Настройка усилителя.

Вот вы уже и собрали усилитель и возможно вам уже даже удалось «насладиться его звучанием», но чтобы усилитель действительно звучал без кавычек необходимо произвести с ним некоторые действия называемые – настройка. Далее я по пунктам распишу как и что крутить чтобы усилитель запел.

Настройка тока покоя.

Между эммитерными резисторами VT13 VT14 включаем милливольтметр. Подаем напряжение на усилитель. Вход усилителя должен быть замкнут на землю. При первом пуске вольтметр может показать что-то от 0 до 15мВ. С помощь R16 выставляем необходимый ток покоя. Сам ток вычисляем по формуле: I(пок.)=U/R , где U – показание вольтметра (в вольтах, 1В=1000мВ), R – сопротивление между эммитерами выходников (по схеме = 0.47 Ома). Рекомендую выставлять ток покоя 60 – 130мА, это соответствует показаниям милливольтметра 30-60 мВ. Регулировка осуществляется с помощью подстроечного резистора R16,
при первом включении сопротивление R16 должно быть максимальным.
Выставление «нуля» на выходе усилителя.

Подключаем между выходом и землей милливольтметра постоянного тока и вращая движок подстроечного резистор R3 добиваемся нулевого значения постоянного напряжения на выходе. Регулировку так же проводим при закороченном на землю входе.
При первом включении движок подстроечного резистора R3 должен находится в среднем положении.
Печатные платы.

Существует несколько вариантов разводки печатной платы. Первый был предложен мной в самом начале:

По этому варианту я сам собирал усилитель, именно с такого варианта усилителя я снимал технические характеристики. Этот вариант печатной платы присутствует во вложении к статье.

Второй вариант был разработан уважаемым товарищем с ником «Лепёхин». Этот вариант разводки так же присутствует в архиве со статьей. Позже этот вариант ПП был изменен товарищем под ником «Gora» и теперь этот окончательный вариант ПП производится в заводских условиях и все желающие могут приобрести заводскую плату для постройки усилителя «Оплеуха Микрухам». Чтобы приобрести заводскую плату необходимо написать сообщение для Gora. Фотография заводской платы ниже:

Фотографии готового усилителя.

Ниже привожу фотографии своего усилителя, как оно получилось и как все это смотрится в готовом виде:

Благодарю всех кто принимал участие в обсуждении усилителя на форуме сайта «Паяльник». Именно благодаря вам и вашей поддержке был разработан этот усилитель. Без вас нечего бы не получилось.

Особую благодарность хочу выразить Лепёхину

за разработку правильной разводки для усилителя, а так же
Gora
за то, что он взял на себя заводское производство плат для моего усилителя.

Так же хотелось бы поблагодарить всех кто собрал мой усилитель, всех кому не равнодушно мое творчество, спасибо вам всем!

печатные платы в формате LAY

Старая версия усилителя Mark II от 2011г: Оплеуха Микрухам Mark 2 [2011]

Стельмах Илья

([email protected])

Aka Nem0

Беларусь, Молодечно 2012

ЗАВЕРШЕНИЕ

Да, этот проект отнял у меня много времени и финансов, но знаете что? Ничуть не жалею, в конце концов был собран действительно очень крутой усилитель, который можно использовать и в машине, и дома, а качество звучания на все 200% лучше любого промышленного аудиоцентра аналогичного класса, не зря в комплексе использовал высококачественные схемы УМЗЧ.

Изначально, затял проект и не знал сколько времени он у меня отнимет, но благодаря конкурсу довел его до конца и успел буквально на последний день приема заявок, хотя очень сомневался, что успею в срок.

Усилитель вполне подходит для дискотек в малых залах — колоссальная мощность не подведет даже на свадьбах, осталось сделать блок питания и предварительные усилители со всеми удобствами, которые планирую на следующее лето. На сборку было потрачено 4 месяца, были трудности с компонентами и временем, которого так не хватает, но при наличии всех компонентов и комплектующих частей, можно уложится в гораздо короткий срок.

На счет качества звучания — не могу передать это словами, нужно лишь раз послушать и все станет ясно! Основные проблемы заключались в том, что нужно было все приспособить, резать, травить и смонтировать все это в общий блок. Над видом передней панели думали всей семьей, в конце концов победила версия матери — именно она предложила этот вариант, за это и многое другое — низкий ей поклон — основные идеи подавала она, ну и разумеется жена тоже не оставалась в стороне — помогала и работала почти наравне со мной.

В процессе сборки были некоторые этапы, когда проект забросил, но находил силы и довел до конца, а сегодня с гордостью представляю его вашему суду — здоровья вам, любви и терпения, всегда ваш КАСЬЯН АКА.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]