У всего есть свое начало, и, если мы говорим о режимах работы усилителя, у истоков стоит конечно же класс А. Именно с него началась история усилителей в частности и электронного аудио в целом. Все, что было до — к электронике, да и вообще к электричеству отношения не имеет, а все что появилось после проще всего понять, зная как работают усилители класса А. Ну и самый удивительный факт: при том, что данная схемотехника уже успела справить свой столетний юбилей, она по-прежнему востребована и конкурирует на равных с самыми совершенными схемотехническими решениями XXI века.
Принцип работы
В далеком 1916 году шведский ученый Эрнст Александерсон, работавший в американской компании General Electric, получил патент на схему усилителя, которая известна всему миру как класс А. Принцип действия усилителя класса А предельно прост, а для создания усилителя такого типа достаточно одного транзистора или одной лампы. Для того, чтобы понять, как он работает, рассмотрим более классическое решение: лампу.
Непосредственно в процессе усиления звукового сигнала в радиолампе участвуют три конструктивных элемента: анод, катод и сетка. При подаче питания в схему между катодом и анодом возникает поток электронов, а сетка, располагающаяся между ними, выполняет роль регулирующего клапана.
При наличии на сетке электрического потенциала она препятствует свободному прохождению электронов, и, чем выше электрический потенциал на сетке, тем меньше электронов проходит от катода к аноду вплоть до полного закрытия лампы. Таким образом, включив полезную нагрузку (акустическую систему) между катодом и анодом и подав сигнал на управляющую сетку, мы получаем простейшую схему усилителя мощности.
Специфика усилителя, работающего с аудиосигналом, состоит в том, что звуковая волна имеет симметричную форму с положительной и отрицательной составляющими, равными по амплитуде.
При подаче такого сигнала на вход усилителя произойдет следующее: в момент прохождения положительной полуволны лампа будет открываться и закрываться так, что сигнал на выходе будет повторять форму звуковой волны на входе. Но в тот момент, когда на вход поступит отрицательная часть полуволны, сетка уже будет полностью заперта, и вместо воспроизведения звука на выходе усилителя мы получим тишину.
Несмотря на то, что в статье мы говорим преимущественно о ламповом классе А, транзисторы так же способны работать соответствующим образом, и на картинке выше вы видите стандартную схему
Для того, чтобы дать лампе возможность воспроизводить обе половины сигнала, Эрнст Александерсон организовал смещение нулевой точки входящего сигнала относительно нулевой точки (полностью закрытого состояния) лампы примерно на середину ее рабочего диапазона. Таким образом, среднее положение звуковой волны соответствовало полуоткрытому состоянию лампы.
В момент прохождения положительной полуволны входящего сигнала лампа открывалась еще сильнее, а при воспроизведении отрицательной полуволны закрывалась, но частично, не доходя до минимальной отметки.
AudioKiller’s site
Усилитель для сборки своими руками, на промышленной плате с интегрированным блоком питания.
Усилитель наушников — незаменимая вещь, если вы хотите слушать музыку на наушники в высоком качестве. Многие усилители, работающие на колонки, также имеют выход и на наушники. Но в них для работы с наушниками используется тот же самый усилитель, который используется и для колонок. Он специализирован именно для колонок, поэтому на наушники работает хуже. Кроме того, обычно в таких усилителях наушники подключаются к выходу через резистор сопротивлением порядка 100 ом. То есть выходное сопротивление такого «неправильного усилителя наушников» получается слишком высоким.
А вот если использовать специализированный усилитель для наушников, то получаем несколько преимуществ:
- Специализированный усилитель работает лучше и позволяет получить наилучшее качество звучания.
- Усилитель наушников можно сделать именно под свои наушники.
- Его можно использовать как отдельный блок, чтобы не гонять для наушников большой усилитель.
- Его можно встроить в основной усилитель для колонок как дополнительный блок, и получить максимально хорошее звучание и на колонки, и на наушники.
Для этого усилителя наушников можно купить печатную плату.
Вроде бы совсем недавно я опубликовал схему простого, но довольно приличного усилителя для наушников и пообещал сделать что-нибудь получше. Но жизнь идет слишком быстро, и времени прошло намного больше, чем я планировал. Тем не менее, я разработал и сделал очень хороший усилитель для наушников. Этот усилитель работает у меня больше года, рис. 1.
Рис. 1. Усилитель для наушников в сборе.
Это стационарный усилитель с питанием от сети. Самое главное в нем: этот усилитель никак не приукрашивает сигнал. На выходе имеем точь-в-точь то, что и на входе. При этом усилитель отлично работает с любыми наушниками, кроме электростатических.
По определению разница между тем, что подается на вход и тем, что получается на выходе, называется искажениями. Поэтому если искажения намного меньше порога чувствительности слуха, то мы их наверняка не слышим. И именно очень маленькие искажения усилителя позволяют мне говорить о том, что звук на выходе точно такой же, как и на входе. Это мое заявление не выдумка, или просто рекламная фраза. Это реальность, подтвержденная измерениями. То есть, этот усилитель ничего не меняет в звуке: и не ухудшает, и не приукрашивает.
Сейчас в моде аппаратура, приукрашивающая (а иногда даже искажающая) звук – стараниями аудиоизданий рекламируется дорогая аппаратура, которая иногда делается не инженерно, а «по понятиям»: без обратной связи (потому что обратная связь – это же ЗЛО!), на лампах по схемам усилителей от дешевых телевизоров 60-х годов ХХ века (потому что лампа одним только своим присутствием делает звук невероятно красивым, поэтому лампы совсем даже не обязательно включать по хорошим схемам), и т.п. Мой усилитель наушников не такой. Что в записи, то и в ушах. Если хотите приукрашенный звук – вам не сюда.
Еще одно интересное свойство усилителя: звук возникает не в центре головы, как иногда бывает при прослушивании наушников, а где-то непонятно где. Как будто по ободу наушников. Мне трудно объяснить словами свои ощущения, но они приятные, музыка не долбит мозг, а окружает тебя. Почему так получается – не знаю. Я даже не представляю причин такого эффекта, поэтому не знаю где их искать.
Концепция усилителя наушников
В усилителе используется высококачественный операционный усилитель (ОУ). Современные ОУ обладают очень хорошими свойствами: большим усилением, высокой рабочей частотой, хорошей линейностью, малыми шумами. Из-за таких качеств их и применяют. Единственным недостатком ОУ является сравнительно небольшой выходной ток: обычные ОУ не рассчитаны для работы на низкоомную нагрузку. Хотя в той старой схеме усилителя наушники подключались прямо на выход ОУ, и все работало, но такая работа хоть и не страшна для ОУ и он с ней справляется, но все же микросхема используется не совсем так, как нужно. То, что она тянет, не значит, что она работает наилучшим образом. А мы-то хотим получить самое лучшее, не так ли? И тут есть ряд вариантов:
I . Применить специальный дорогой ОУ с большим выходным током.
Достоинства:
- Схема будет такая же, как и у моего усилителя на одном ОУ. Так что можно в принципе делать ту же схему на другой микросхеме.
Недостатки:
- Микросхема мощного ОУ дорогая и дефицитная. Стоимость такой микросхемы может оказаться больше, чем стоимость всего этого усилителя.
- Такие микросхемы склонны к возбуждению. Чтобы мощный высокочастотный ОУ хорошо работал, нужно тщательно разводить печатную плату, развязывать питание, компенсировать емкость монтажа. В общем, есть шанс, что микросхема будет работать плохо, а что плохо работает – хорошо звучать не может.
II . Применить специализированную микросхему усилителя наушников, которые выпускает ряд фирм.
Достоинства:
- Миниатюрность усилителя.
- Возможность питания от одного источника напряжением 3…5 вольт.
Недостатки:
- Эти микросхемы разрабатываются специально для носимых устройств. Они могут недостаточно хорошо работать на высокоомные или низкоомные наушники. Либо на наушники с низкой чувствительностью.
- Качество может быть не всегда высокое, поскольку некоторые микросхемы предназначены для mp3 плееров.
- Даже если качество микросхемы высокое – а современные технологии позволяют получить очень хорошие микросхемы – то все равно, сравните стратегии изготовления усилителей:
- сделать усилитель с максимально качественным звучанием.
- сделать микросхему, которая бы максимально хорошо работала от источника питания 3 вольта.
- Хорошие микросхемы могут быть дефицитными и недешевыми.
III . Умощнить выход обычного ОУ.
Недостатки:
- Схема усложняется, но не очень сильно, поэтому усложнение схемы нам не страшно. Кроме того, детали потребуются доступные и недорогие.
Достоинства:
- Можно получить очень высокое качество звучания, так как схема выходного каскада специально разрабатывается под низкоомную нагрузку. То есть вместо универсального устройства, мы можем использовать специализированное, которое в своей области обязательно лучше универсального.
- Можно сделать усилитель в точности под свои наушники.
Так что вариант с умощнением выхода ОУ самый привлекательный
Схема усилителя для наушников приведена на рисунке 2. Идея схемы такова: операционный усилитель осуществляет усиление напряжения и создает глубокую отрицательную обратную связь. А ему на выход включается эмиттерный повторитель, усиливающий ток. Существуют схемы, состоящие из одного только эмиттерного повторителя, но мне они не подходят:
- У них слишком высокая вторая гармоника. Она хоть и обеспечивает «сладкий звук», но при этом заметно приукрашивает звучание.
- У эмиттерного повторителя слишком много высших гармоник, которые на слух плохо воспринимаются. Отчасти их забивает «красивая» вторая гармоника, но только отчасти. Поэтому качество звучания для меня получается неудовлетворительное.
В этой схеме глубокая ООС компенсирует высшие гармоники. Благодаря однотактному выходу, в спектре преобладает вторая гармоника, но все гармоники, включая и вторую намного меньше чувствительности слуха. В результате имеем:
- отличный «правильный» спектр искажений;
- который на самом деле не имеет значения: искажения намного меньше порога чувствительности слуха.
Можно взять исходный усилитель с плохими параметрами и пытаться линеаризовать его при помощи ООС. Тут уж как получится. Может получиться неплохо, а вот если исходный усилитель достаточно плохой, то ООС его может и не исправить, а даже ухудшить. Вот из-за таких конструкций и говорят, что ООС вредна. Другое дело, если исходный усилитель изначально имеет максимально хорошие параметры. Тогда ООС его улучшит, и результат получится замечательный. Именно такая стратегия и заложена в этот усилитель. В результате мы получаем много преимуществ:
- Достаточно высокое напряжение питания, что позволяет использовать самые высокоомные наушники. И при этом совершенно не бояться клиппинга.
- Сравнительно большой ток покоя, что позволяет использовать очень низкоомные наушники (ток покоя можно установить какой требуется).
- Хороший запас по выходной мощности, и большой «запас прочности» по всем параметрам.
- Изначально высокая линейность. А это очень важно: если исходный усилитель без отрицательной обратной связи имеет хорошую линейность, то введение ООС значительно улучшит его свойства. Если линейность исходного усилителя плохая, то бывает, что никакая ООС помочь не может — все равно звук получается невысокого качества.
На самом деле совсем не обязательно было делать выходной каскад однотактным. Есть и другие хорошие варианты, они пока ждут изготовления и проверки в реальности (в модели работают отлично). Но однотактный выходной каскад в классе А (а однотактный каскад только в нем и может работать) – это выглядит «очень по Hi-End’ному», а поскольку качество звука при этом великолепное, то вам будет чем хвастаться!
На самом деле однотактный выходной каскад применим только для маломощной нагрузки, так как реальный КПД такого каскада не более 40%. Но у нас именно такая ситуация — требуемая максимальная выходная мощность составляет десятки милливатт, так что все отлично работает. А работа выходного транзистора в классе А — необходимое условие. Потому что в таком режиме транзистор не входит в отсечку — ток через транзистор не прерывается, а протекает всегда. Часть этого тока поступает в нагрузку. Ток через транзистор нельзя прерывать (транзистор не должен закрываться) потому что нельзя прерывать ток нагрузки. Зато, работая в таком режиме, транзистор создает минимум искажений.
Принципиальная схема усилителя наушников
Рис. 2. Усилитель наушников схема.
Итак, что и как в схеме устроено. Сам усилитель наушников стереофонический. На схеме показан только один канал — левый. Правый — точно такой же. Сдвоенный операционный усилитель работает на оба канала. Поэтому те детали, которые образуют левый канал, на печатной плате имеют в наименовании индекс L. Это означает, что для правого канала понадобится точно такой же компонент, который будет иметь индекс R. Например, R4L и R4R. Компоненты DA1, С4, С5, С6, R5, DA2, С7, С8, С9 общие для обоих каналов и используются по одной штуке на усилитель.
1. Операционный усилитель используется в инвертирующем включении. В старых ОУ такое включение повышало линейность входного дифференциального каскада. В современных ОУ происходит то же самое, но в них входные каскады очень хорошие, поэтому улучшение очень-очень маленькое и совершенно незаметное на слух. Но все же выигрыш в таком включении есть, про него позже. Резисторы R3 и R4 создают отрицательную обратную связь (ООС) и задают коэффициент усиления усилителя, равный примерно трем. Такого усиления хватает практически для любых наушников. Если все же громкости недостаточно, можно увеличить R4 до 330 кОм. Операционный усилитель типа OPA2134. Это очень хороший ОУ, предназначенный в том числе и для высококачественного аудио, и заменять его другим не рекомендуется.
2. Транзистор VT1 – выходной эмиттерный повторитель. Его нагрузка – источник тока на транзисторе VT2, в таком включении эмиттерный повторитель работает наилучшим образом. Микросхема стабилизатора DA2 задает напряжение на базе VT2, а значит его ток. Этот ток является током покоя выходного каскада, поскольку он протекает и через транзистор VT1. Более того, ток покоя транзистора VT1 жестко стабилизируется неизменным током транзистора VT2. В принципе, вместо микросхемы стабилизатора можно применить стабилитрон, но с микросхемой чуть-чуть лучше. Микросхема дешевая и доступная, так что будем делать как лучше, хоть и на самую капельку. Резистор R 5 задает ток через микросхему стабилизатора, а конденсатор С6 снижает шум и возможные пульсации напряжения. Вместо микросхемы DA2 вполне можно было бы использовать стабилитрон, но микросхема лучше за те же деньги.
3. Резистор R6 задает ток источника тока и, следовательно, ток покоя выходного каскада.
4. Конденсаторы С4, С5, С7, С8, С9 – развязывающие. Их цель не столько сгладить пульсации напряжения питания (этих пульсаций не должно быть изначально), сколько обеспечить стабильность усилителя и пропустить через себя ток нагрузки. Надо помнить, что ток нагрузки замыкается через источник питания. Поэтому, чтобы не «гонять» ток через блок питания, позволим ему замыкаться через конденсаторы, установленные на плате. Керамические конденсаторы С4, С5, С9 пропускают высокочастотные сигналы, электролитические С7 и С8 – среднечастотные. Не надо бояться того, что керамические конденсаторы нелинейные – в этом включении напряжение на них постоянно, и искажений они не создают.
5. Резистор R2 – регулятор громкости. Если он не нужен, то вместо него устанавливается перемычка, показанная пунктиром.
6. Цепь R1С1 защищает усилитель от проникновения ультразвуковых и радиочастотных помех, обрезая все частоты выше 48 кГц.
7. Конденсатор С2 защищает вход от постоянного тока и заодно обрезает частоты ниже 7 Гц, что защищает от инфразвука. Если вы хотите, чтобы завал АЧХ на частоте 20 Гц был еще меньше, используйте конденсатор емкостью 0,68 мкФ (частота среза 5 Гц), если слушаете виниловые грампластинки, то емкость С2 желательно уменьшить до 0,33 мкФ (частота среза 10 Гц).
8. Конденсатор С3 увеличивает глубину ООС на частотах выше 70 кГц. Он выполняет сразу несколько функций:
- снижает усиление на этих частотах, следовательно уменьшает количество ультразвука — это важно, ведь усилитель наушников подает сигнал практически вам в уши. Если там будет присутствовать ультразвук — это вредно отразится на вашем здоровье;
- повышает устойчивость усилителя;
- улучшает переходную характеристику;
- полностью устраняет возможность появления динамических искажений (совместно с R1С1).
9. Резистор R7 разделяет входную и выходную земли. На самом деле он не обязателен, но опять же, с ним чуть-чуть лучше.
10. Диод VD1 выполняет очень интересную функцию: позволяет увеличить максимально возможный ток в нагрузке в 1,5 раза.
Как работает диод VD1?
Транзистор VT1 включен эмиттерным повторителем, поэтому способен выдать на выход ток любой величины (в разумных пределах), даже в несколько ампер, если будет на то необходимость. Например, в случае низкоомной нагрузки. Это происходит при положительном полупериоде выходного напряжения. На отрицательном полупериоде работает транзистор VT2. А он включен источником тока, и ток больший, чем он задает, в нагрузке получить невозможно. Меньше – пожалуйста, излишек тока уйдет в транзистор VT1. Таким образом, при попытке получить в нагрузке ток большой величины, положительный полупериод мы получим довольно большой (ампер ни ампер, но четверть ампера – запросто), а вот отрицательный ток будет максимум 40 миллиампер – столько, сколько составляет ток покоя VT2. Можно конечно увеличить его ток покоя, но это увеличит его нагрев.
И тут нам помогает диод VD1. При отрицательном полупериоде выходного напряжения и в случае, если тока транзистора VT2 не хватает, диод открывается, и пропускает в нагрузку выходной ток ОУ. А это десяток-другой миллиампер. На самом деле, это ситуация критическая, ее быть не должно, так как при этом нагружается ОУ и искажения несколько растут. Пусть они и остаются небольшими и незаметными, но сам факт роста искажений неприятен. Но ведь любая критическая ситуация один раз в жизни может наступить. Например, вы изготовили усилитель для работы с нагрузкой от 64 ом и выше, а пришлось в него включить нагрузку 16 ом и установить большую громкость. Без диода усилитель бы перегружался и искажал звук. А с диодом – работает. С диодом усилитель достаточно громко работает даже на колонки сопротивлением 6 ом.
Влияние диода VD1 и рекомендации по выбору компонентов и монтажу описано в статье Усилитель наушников в классе А с однотактным выходом на промышленной плате.
В схеме усилителя ряд элементов служит для очень небольшого улучшения его свойств. Без них вполне можно было бы и обойтись. Почему я их использовал? Чтобы получить максимум качества. В рекламе Hi-End техники нам заявляют, что качество этой аппаратуры максимальное. И цены тоже максимальные. В этом усилителе я получил максимальное качество при небольшой цене. Так что это настоящий Hi-End , но за разумные деньги (на самом деле цены на Hi-End такие высокие не потому, что аппаратура на самом деле всегда имеет высокое качество, а по экономическим причинам, но это уже совсем другая история).
В схеме усилителя используется целых два элемента для борьбы с ультразвуком. Это важно! Дело в том, что в современном мире мы окружены высокочастотными излучениями. Это излучение телефонов, Wi-Fi , bluetooth, излучение через эфир и через сеть от импульсных блоков питания. Да и фильтрация частоты дискретизации ЦАПов не всегда идеальна. При проигрывании виниловых грампластинок тоже могут возникать ультразвуковые колебания, вызванные движением иглы по канавке. Ультразвук вреден для здоровья, а если он излучается наушниками непосредственно в уши… Радиочастоты наушниками не излучаются, но они могут преобразовываться в более низкие частоты, проходя через нелинейные элементы усилителя, которые на работу с такими частотами не рассчитаны. И результат такого преобразования может оказаться самым разным, он может лежать как в звуковом диапазоне (лишние неприятные призвуки), так и ультразвуковом. Также ультразвук может вызывать перегрузку усилителя по скорости нарастания выходного напряжения, а это приведет к возникновению динамических искажений. В общем, существует довольно много веских причин избавляться от сверхвысокочастотных составляющих.
Вот тут и помогает инвертирующая схема включения операционного усилителя. В этой схеме подавление ультразвука при помощи отрицательной обратной связи не ограничено, поэтому усилитель в целом образует для ультразвука полноценный и эффективный фильтр второго порядка.
Аналогично действует и входной фильтр инфранизких частот (ИНЧ). Они также вредны для организма, и могут излучаться качественными наушниками довольно сильно. Особенно много ИНЧ составляющих может возникнуть при проигрывании виниловых грампластинок, но как ни странно, они могут поступать и с ЦАПа. Так что причины оберегаться от инфразвука также существуют.
Оба этих фильтра: ультразвука и инфразвука работают довольно далеко от звукового диапазона, поэтому не влияют на звук (их влияние заведомо меньше порога чувствительности слуха). И при этом достаточно близко к звуковому диапазону, чтобы быть эффективными. Но все в ваших руках: если вы верите аудиофильской пропаганде, и считаете, что даже небольшие изменения АЧХ и ФЧХ усилителя на краях диапазона (которые меньше предела чувствительности слуха) для вас неприемлемы, то можно расширить диапазон частот как вниз по частоте, так и вверх, изменив емкости конденсаторов фильтров.
Параметры усилителя
Теперь о качестве звучания. В начале статьи я заявил, что усилитель передает на выход точь-в-точь то, что было на входе. Пришла пора доказывать это. По определению, разница между тем, что подаем на вход, и тем, что получаем на выходе, называется искажениями. Искажения делятся на два типа: линейные и нелинейные. Линейные искажения – это искажения АЧХ и ФЧХ. Я эти характеристики даже не привожу: в современных транзисторных устройствах плохие частотные и фазовые характеристики можно получить разве что преднамеренно. Нелинейные искажения связанны с нелинейностью электронных компонентов (ламп, транзисторов, микросхем), и вот их имеет смысл измерить. Итак, спектр нелинейных искажений на частоте 1 кГц показан на рисунке 3. Для измерений использована высококачественная звуковая карта ESI Juli @, работающая в режиме 24 бит, 192 кГц. Полученный спектр – это спектр системы звуковая карта + усилитель. То есть чисто усилитель чуть лучше.
Рис. 3. Спектр искажений усилителя на частоте 1 кГц. Полоса учитываемых частот до 96 кГц.
Как их понимать?
- Коэффициент нелинейных искажений Кг (THD) равен 0,0012%. Это примерно в 10 раз меньше разрешающей способности слуха (даже по самым оптимистичным психоакустическим измерениям). То есть – мы эти нелинейные искажения наверняка не слышим.
- Спектр гармоник очень узкий – в нем присутствуют только вторая гармоника, которая «красиво звучит» и немного третья. Чем больше номер (порядок) гармоники, тем неприятнее она для слуха (правильнее сказать: тем более неприятные искажения создает усилитель, обладающий такими свойствами). Маленькая составляющая частотой порядка 12 кГц не является гармоникой, так как присутствует и на втором графике. Скорее всего, это какая-то помеха.
Обычно на этом и останавливаются. Но мне хотелось изучить усилитель более подробно. Поэтому вот спектр гармоник (и значение Кг) при возбуждении усилителя частотой 10 кГц (рис. 4). Это более жесткий тест – на высоких частотах усилители работают хуже, поэтому такой тест никто делать не любит. Я сделал.
Рис. 4. Спектр искажений усилителя на частоте 10 кГц. Полоса учитываемых частот до 96 кГц.
В тесте учитывались частоты вплоть до 90 кГц, то есть до 9-й гармоники включительно. Но этих гармоник нет, усилитель очень линейный, видимые искажения имеют максимум 4-й порядок. А общая их величина Кг (THD) = 0,011%. Это снова намного меньше разрешающей способности слуха на этой частоте. И снова красивый (правильный) спектр искажений — чем номер гармоники выше, тем ее амплитуда меньше.
Следующий тест – интермодуляционные искажения IMD . Тест проводился в наиболее жесткой форме: на вход подавалась сумма частот 18 и 19 кГц (рис. 5). На высоких частотах искажения максимальны, так что то, что показано на рисунке – это максимум возможных искажений усилителя. IMD = 0,005%, что опять же меньше разрешающей способности слуха.
Рис. 5. Интермодуляционные искажения усилителя (IMD).
И снова обратите внимание на небольшое количество возникающих дополнительных частот около возбуждающих сигналов 18 и 19 кГц. Это свидетельствует о том, что порядок нелинейности усилителя небольшой, а значит, производимые им искажения не являются неприятными для слуха.
Итак, измерения подтверждают, что усилитель отличный и не вносит сколько-нибудь заметных искажений в сигнал. Частоты, кратные частоте 50 Гц – помехи от сети на самом деле также не слышные.
Все тесты проводились в «боевых» условиях. Был использован штатный блок питания, работали оба канала усилителя и оба канала были нагружены на сопротивление 64 ома. Выходное напряжение равно 2 вольта амплитуды. Это соответствует выходной мощности 30 мВт. В наушниках нормальной чувствительности (90…100 дБ/мВт) при такой мощности звуковое давление составит 120…130 дБ – это уже болевой порог слуха. На меньшей громкости искажения меньше.
Плата усилителя наушников
Монтажная схема специально сделана простой, чтобы этот усилитель наушников мог сделать даже начинающий, рис. 6. В ней не используются компоненты для поверхностного монтажа. Размеры платы из-за этого получились не очень маленькими, но в корпус усилителя плата великолепно становится (корпус приобретен на Али-экспресе).
Рис. 6. Усилитель наушников. Самодельная плата.
Детали не дефицитные и не дорогие но для сохранения максимального качества лучше не отступать от рекомендованных комплектующих. Конденсаторы С1 и С3 керамические с ТКЕ равным НП0 (NP 0) – такие конденсаторы весьма линейны. С2 – пленочный лавсановый. Можно использовать и полипропиленовый, но разницы реально (в грамотном слепом тестировании) не заметно. Транзисторы можно на радиаторы не устанавливать, но с небольшими радиаторами их тепловой режим, особенно в корпусе, все же лучше. С6 можно использовать либо алюминиевый указанной емкости, либо танталовый 47 мкФ на 16 вольт. Конденсаторы С4, С5, С9 – керамические из диэлектрика X7R . С7 и С8 хорошо бы использовать Low ESR , но можно и обычные. Сопротивление резисторов R7 увеличивать не следует, если таких резисторов нет, то вместо них устанавливаются перемычки. При отсутствии однопроцентных резисторов, можно использовать «обычные» точностью 5%, которые крайне желательно подобрать по равенству сопротивлений в обоих каналах усилителя. Диод VD1 – любой современный кремниевый высокочастотный (или импульсный) диод. Чем больше его допустимый прямой ток (значения которого обычно лежат в пределах 30…100 мА), тем лучше. Выпрямительный диод в принципе работать будет, но очень плохо – он не рассчитан на работу с частотами выше 1 кГц.
Я изготовил плату этого усилителя промышленным способом: Усилитель наушников в классе А с однотактным выходом на промышленной плате. На этой же странице даны дополнительные советы по сборке, замене деталей и настройке, которые помогут и для сборки самодельной платы.
Блок питания
Для получения максимального качества звучания, усилитель должен иметь хороший источник питания, рис. 7. Несмотря на то, что все схемы проектируются так, чтобы питание на них влияло минимально (ну может кроме некоторых Hi — End изделий, которые как будто специально разрабатываются, чтобы плохо работать от «обычного» источника питания), тем не менее, питание должно быть хорошим. В усилителе используется стабилизированное питание. Сглаживающие конденсаторы С11, С12 (нумерация деталей блока питания продолжает нумерацию деталей усилителя, так уж вышло) имеют довольно большую емкость. Меньше 1000 мкФ использовать не желательно (но можно в крайнем случае), больше чем 3300 мкФ устанавливать нет смысла (но работать будет). Резисторы R11, R12 разряжают конденсаторы фильтра при выключении питания. Они не обязательны, но я привык их использовать – иначе лезешь в схему отверткой после того, как выключил из сети, а оттуда искры! Микросхемы стабилизатора заменять не следует: более дешевые 7812 и 7912 немного хуже стабилизируют напряжение, хуже работают с импульсными токами и «не любят» емкостную нагрузку. Конденсаторы С13, С14 улучшают сглаживание пульсаций. Диодный мост – любой на ток не менее 1 ампера. Микросхемы стабилизаторов очень желательно установить на небольшие радиаторы.
Рис. 7. Схема блока питания усилителя наушников.
«Скользким» моментом в этой схеме является применение резисторов R8 и R9 в цепи первичной обмотки силового трансформатора. Их назначение – слегка обрезать верхушки синусоиды напряжения питания, а это в свою очередь снизит значение максимальной индукции в трансформаторе. В результате небольшое насыщение сердечника, которое всегда происходит при максимуме напряжения, будет предотвращено, и помехи, излучаемые трансформатором через его магнитное поле, снизятся. Это чисто партизанский метод – он ведет к некоторому снижению КПД блока питания, но он действует! Заодно эти резисторы работают чем-то вроде софтстарта. Снижение напряжения на верхушках синусоиды показано на рисунке 8. Мне было неудобно подключать осциллограф в сеть для иллюстрации результатов работы резисторов R8 и R9, поэтому на рис. 8 показан результат моделирования, но нечто очень похожее происходит и в реальности. И помехи, излучаемые трансформатором, которые могут воздействовать на схему, действительно снижаются. Заодно повышается эффективность конденсатора С10 по подавлению высокочастотных помех. На основную функцию блока питания резисторы R8 и R9 не влияют. С10 — специальный полипропиленовый конденсатор, поредназначенный для работы в качестве фильтра сетевых помех. Сейчас такие конденсаторы вполне доступны. Заменять его на «обычный», например К73-17 крайне не рекомендуется, но если все же используется К73-17, то на напряжение 630 вольт, на напряжение 400 вольт такой конденсатор использовать нельзя.
Рис. 8. Снижение максимальной индукции в трансформаторе.
Резистор R10 соединяет землю схемы с корпусом усилителя. Наличие резистора создает защитную функцию: при случайном замыкании на корпус ток КЗ будет ограничен. А сам резистор при этом может сгореть, сыграв роль предохранителя. Его перегорание будет заметно, так что о возникшей проблеме сразу станет известно. Соединение с корпусом происходит автоматически через металлизированное монтажное отверстие блока питания и крепежный винт.
Важно! Корпус усилителя должен соединяться с землей схемы только в одной этой точке через резистор R10. Других соединений схемы с корпусом быть не должно.
Рис. 9. Плата блока питания.
Силовой трансформатор мощностью не менее 8 Вт (в общем-то допустима мощность от 6 Вт, но это сильно зависит от конкретного трансформатора – некоторые из них могут сильно греться). Он должен содержать две одинаковые вторичные обмотки (или одну обмотку со средней точкой) на напряжения 18…22 вольта каждая. Допустимый ток обмотки должен быть не менее 0,2 ампера. Например, подойдут ТПП-232, ТПП-234.
Все резисторы, кроме явно указанных на схеме, мощностью 0,125 Вт и точностью 5%.
После сборки блока питания высоковольтную часть платы блока питания (а лучше всю плату) со стороны монтажа следует покрыть цапон-лаком. Это предотвратит утечки по плате из сети в низковольтную часть.
Чертежи усилителя и печатной платы. Печатная плата слегка изменена относительно прототипа, показанного здесь на фотографиях.
headamp2-diy
Усилитель, собранный на промышленной плате с интегрированным блоком питания.
30.04.2019
Total Page Visits: 5259 — Today Page Visits: 2
Плюсы
На первый взгляд, схема довольно симпатична и имеет целый ряд неоспоримых преимуществ. Во-первых, она проста, лаконична и является отличным примером предельно короткого звукового тракта. Во-вторых, лампа или транзистор, работающие в классе А, постоянно находятся в рабочем состоянии и мгновенно реагируют на изменения входящего сигнала — у них нет временных задержек, возникающих в момент выхода из полностью закрытого состояния.
В-третьих, середина рабочего диапазона электронного компонента — это та зона, в которой он работает максимально эффективно и без искажений. Значит, если не увеличивать амплитуду до предельных значений (не выкручивать особенно сильно ручку громкости и не подключать к усилителю тяжелую нагрузку), усилитель будет работать исключительно в комфортном режиме, и сигнал на выходе будет иметь практически идеальный вид.
К сожалению, все эти плюсы без побочных эффектов можно реализовать только в слаботочных цепях предварительного усилителя. А когда речь заходит о работе на мощностях, необходимых для взаимодействия с акустическими системами, класс А проявляет свои не менее очевидные минусы.
В предыдущей статье мы начали рассматривать простую технологию изготовления стереоусилителя на лампах, с мощностью, достаточной для использования его в комнате. Самую сложную проблему конструкции — корпус, удалось решить задействовав красивую ненужную китайскую АС из ДСП. Далее рассмотрим сборку, настройку и финальные испытания однотактного лампового УНЧ.
Все габаритные элементы усилителя (сетевой и звуковые трансформаторы, дроссель, высоковольтные электролиты), крепим к деревянному основанию с помощью шурупов. А лампы и резисторно-конденсаторную обвязку собираем на верхней алюминиевой крышке. Естественно, никаких печатных плат. Все соединения должны быть максимально короткими, так как по ним идут значительные токи (цепи накала) и напряжения (анодные цепи).
При таком виде монтажа любые настройки и подбор деталей производятся легко и удобно, ведь многократное перепаивание деталей на печатную плату неизбежно приведёт к отслоению дорожек.
В общем после сборки всего усилителя, производим испытание блока питания. Не забудьте на анодный выход, параллельно конденсатору фильтра, припаять резистор 2 ватта 200-500 кОм. Он будет быстро разряжать ёмкости после выключения, иначе вам придётся делать это каждый раз в процессе настроек отвёрткой (что не для слабонервных).
Соединения должны быть проводами достаточной толщины. Вы же не станете пускать накальную шину, по которой течёт ток до 4-х ампер, проводом 0,3 мм. А использование проводов различных цветов (чёрный — масса, красный — анод, оранжевый — накал, синий и зелёный — сигналы), предостережёт от ошибок.
Убедившись, что на выходе БП положенное напряжение, конденсаторы не взрываются, а диоды не греются (это может быть при наличии электролита с сильной утечкой) — подключаем усилитель. Но для начала только выходной каскад, на 6П41С.
Динамики должны быть подключены, так как сильный гул-свист будут свидетельствовать о проблемах и ошибках сборки. Сразу меряем ток потребления каждой лампы, путём контроля падения напряжения на катодных резисторах. По закону Ома: I=U/R =30/470 =70 мА. Если ток будет слишком мал — лампа не даст чистого звука, если велик — перегреется и сгорит.
Коснувшись отвёрткой входной сетки, можно услышать фон. Это значит каскад работает исправно. Можно подключать лампу драйвера — 6П14П.
Честно говоря, я очень сомневался, на своё ли место она метит. Мы привыкли видеть её на выходе, а здесь ей уготовили второстепенную роль. Но результат оказался просто великолепным — прекрасный коэффициент усиления, противоперегрузочная способность и достаточно ровная АЧХ!
А знаете из чего сделана ручка на регуляторе громкости? Это красивый колпачок от флакона с духами:) Итого, проведя сравнительное прослушивание данного однотактного усилителя с аналогичным с 6П14П на выходе, убедился в значительном преимуществе именно свежесобранного. Мощность раза в 2 выше, что уже позволяет слушать приятные басы. Справедливости ради, отмечу несколько слабоватые высокие частоты. Но в целом звук получился приятный и не утомляющий. С типичной ламповой «мягкостью», выражающуюся в глубине и отсутствии скрипучих искажений.
Анализируя причины снижения уровня ВЧ пришёл к выводу, что всему виной слабенький, как для мощной строчной 6п41С, выходной трансформатор ТВЗ1. По-хорошему, сюда нужен более солидный ТС-160 или ТСШ-170. Но размеры корпуса, а так-же желание поставить их в более мощный ламповый усилитель (есть неплохая идейка собрать стерео 100-ваттник)… В общем играет и так отлично, да и размеры вменяемые — смотрите сравнение с мобильником:)
Автор: https://elwo.ru
Вас может заинтересовать:
| Радиолампы, использованные в статье:
|
Комментарии к статьям на сайте временно отключены по причине огромного количества спама.
Минусы
Главные минусы класса А так же, как и плюсы, вытекают из выбранного создателем принципа работы. Нулевой уровень входного сигнала приходится на середину рабочего диапазона электронного компонента, а это значит, что, когда на входе тишина — транзистор или лампа уже открыты наполовину и работают вполовину своей мощности, расходуя вхолостую много энергии. Реальный же КПД усилителей класса А оказывается существенно ниже теоретических 50%. Из 100% энергии, потребляемой усилителем, акустика получает не более 20–25%, а вся остальная энергия преобразуется в тепло.
Повышение рабочей температуры может негативно сказываться на режиме работы усиливающего элемента, поэтому транзисторные усилители класса А, выдающие хоть сколько-нибудь существенную мощность, обладают огромными радиаторами.
Если же вы хотите получить на выходе не десятки, а сотни ватт мощности, сохранив при этом режим работы усилителя в классе А, готовьте комнату побольше и вентиляцию для отвода тепла помощнее, ведь вследствие низкого КПД сам усилитель будет огромным, а его блок питания и вовсе колоссальным.
За всем этим следует целый ряд сопутствующих проблем. Прежде чем счастливый обладатель усилителя класса А получит свой первый огромный счет за электричество, ему придется потратить немало денег на сам усилитель, ведь большие блоки питания, тяжелые выходные трансформаторы ламповых и массивные радиаторы транзисторных усилителей сами по себе стоят денег.
В ходе эксплуатации вслед за увеличившимися расходами на электроэнергию аудиофил рано или поздно столкнется с еще одной проблемой усилителей класса А — повышенным износом активных элементов схемы. Особенно эта проблема касается ламп. Работая в классе А, они постоянно находятся под большой нагрузкой, что сокращает их и без того малый ресурс работы.
Транзисторный усилитель класса А своими руками
На Хабре уже были публикации о DIY-ламповых усилителях, которые было очень интересно читать. Спору нет, звук у них чудесный, но для повседневного использования проще использовать устройство на транзисторах. Транзисторы удобнее, поскольку не требуют прогрева перед работой и долговечнее. Да и не каждый рискнёт начинать ламповую сагу с анодными потенциалами под 400 В, а трансформаторы под транзисторные пару десятков вольт намного безопаснее и просто доступнее.
В качестве схемы для воспроизведения я выбрал схему от John Linsley Hood 1969 года, взяв авторские параметры в расчёте на импеданс своих колонок 8 Ом.
Классическая схема от британского инженера, опубликованная почти 50 лет назад, до сих пор является одной из самых воспроизводимых и собирает о себе исключительно положительные отзывы. Этому есть множество объяснений: — минимальное количество элементов упрощает монтаж. Также считается, что чем проще конструкция, тем лучше звук; — несмотря на то, что выходных транзисторов два, их не надо перебирать в комплементарные пары; — выходных 10 Ватт с запасом хватает для обычных человеческих жилищ, а входная чувствительность 0.5-1 Вольт очень хорошо согласуется с выходом большинства звуковых карт или проигрывателей; — класс А — он и в Африке класс А, если мы говорим о хорошем звучании. О сравнении с другими классами будет чуть ниже.
Внутренний дизайн
Усилитель начинается с питания. Разделение двух каналов для стерео правильнее всего вести уже с двух разных трансформаторов, но я ограничился одним трансформатором с двумя вторичными обмотками. После этих обмоток каждый канал существует сам по себе, поэтому надо не забывать умножать на два всё упомянутое снизу. На макетке делаем мосты на диодах Шоттки для выпрямителя.
Можно и на обычных диодах или даже готовых мостах, но тогда их необходимо шунтировать конденсаторами, да и падение напряжения на них больше. После мостов идут CRC-фильтры из двух конденсаторов по 33000 мкф и между ними резистор 0.75 Ом. Если взять меньше и ёмкость, и резистор, то CRC-фильтр станет дешевле и меньше греться, но увеличатся пульсации, что не комильфо. Данные параметры, имхо, являются разумными с точки зрения цена-эффект. Резистор в фильтр нужен мощный цементный, при токе покоя до 2А он будет рассеивать 3 Вт тепла, поэтому лучше взять с запасом на 5-10 Вт. Остальным резисторам в схеме мощности 2 Вт будет вполне достаточно.
Далее переходим к самой плате усилителя. В интернет-магазинах продаётся куча готовых китов, однако не меньше и жалоб на качество китайских компонентов или безграмотных разводок на платах. Поэтому лучше самому, под свою же «рассыпуху». Я сделал оба канала на единой макетке, чтобы потом прикрепить её ко дну корпуса. Запуск с тестовыми элементами:
Всё, кроме выходных транзисторов Tr1/Tr2, находится на самой плате. Выходные транзисторы монтируются на радиаторах, об этом чуть ниже. К авторской схеме из оригинальной статьи нужно сделать такие ремарки:
— не всё нужно сразу впаивать намертво. Резисторы R1, R2 и R6 лучше сначала поставить подстроечными, после всех регулировок выпаять, измерить их сопротивление и припаять окончательные постоянные резисторы с аналогичным сопротивлением. Настройка сводится к следующим операциям. Сначала с помощью R6 выставляется, чтобы напряжение между X и нулём было ровно половиной от напряжения +V и нулём. В одном из каналов мне не хватило 100 кОм, так что лучше брать эти подстроечники с запасом. Затем с помощью R1 и R2 (сохраняя их примерное соотношение!) выставляется ток покоя – ставим тестер на измерение постоянного тока и измеряем этот самый ток в точке входа плюса питания. Мне пришлось ощутимо снизить сопротивление обоих резисторов для получения нужного тока покоя. Ток покоя усилителя в классе А максимальный и по сути, в отсутствие входного сигнала, весь уходит в тепловую энергию. Для 8-омных колонок этот ток, по рекомендации автора, должен быть 1.2 А при напряжении 27 Вольт, что означает 32.4 Ватта тепла на каждый канал. Поскольку выставление тока может занять несколько минут, то выходные транзисторы должны быть уже на охлаждающих радиаторах, иначе они быстро перегреются и умрут. Ибо греются в основном они.
— не исключено, что в порядке эксперимента захочется сравнить звучание разных транзисторов, поэтому для них тоже можно оставить возможность удобной замены. Я попробовал на входе 2N3906, КТ361 и BC557C, была небольшая разница в пользу последнего. В предвыходных пробовались КТ630, BD139 и КТ801, остановился на импортных. Хотя все вышеперечисленные транзисторы очень хороши, и разница может быть скорее субъективной. На выходе я поставил сразу 2N3055 (ST Microelectronics), поскольку они нравятся многим.
— при регулировке и занижении сопротивления усилителя может вырасти частота среза НЧ, поэтому для конденсатора на входе лучше использовать не 0.5 мкф, а 1 или даже 2 мкф в полимерной плёнке. По Сети ещё гуляет русская картинка-схема «Ультралинейный усилитель класса А», где этот конденсатор вообще предложен как 0.1 мкф, что чревато срезом всех басов под 90 Гц:
— пишут, что эта схема не склонна к самовозбуждению, но на всякий случай между точкой Х и землёй ставится цепь Цобеля: R 10 Ом + С 0.1 мкф. — предохранители, их можно и нужно ставить как на трансформатор, так и на силовой вход схемы. — очень уместным будет использование термопасты для максимального контакта между транзистором и радиатором.
Слесарно-столярное
Теперь о традиционно самой сложной части в DIY — корпусе. Габариты корпуса задаются радиаторами, а они в классе А должны быть большими, помним про 30 Ватт тепла с каждой стороны. Сначала я недоучёл эту мощность и сделал корпус со средненькими радиаторами 800см² на канал. Однако при выставленном токе покоя 1.2А они нагрелись до 100°С уже за 5 минут, и стало ясно, что нужно нечто помощнее. То есть нужно либо ставить радиаторы побольше, либо использовать кулеры. Делать квадрокоптер мне не хотелось, поэтому были куплены гигантские красавцы HS 135-250 площадью 2500 см² на каждый транзистор. Как показала практика, такая мера оказалась немного избыточной, зато теперь усилитель спокойно можно трогать руками – температура равна лишь 40°С даже в режиме покоя. Некоторой проблемой стало сверление отверстий в радиаторах под крепления и транзисторы – изначально купленные китайские свёрла по металлу сверлили крайне медленно, на каждую дырку уходило бы не менее получаса. На помощь пришли кобальтовые свёрла с углом заточки 135° от известного немецкого производителя — каждое отверстие проходится за несколько секунд!
Сам корпус я сделал из оргстекла. Заказываем у стекольщиков сразу нарезанные прямоугольники, выполняем в них необходимые отверстия для креплений и красим с обратной стороны чёрной краской.
Покрашенное с обратной стороны оргстекло смотрится очень красиво. Теперь остаётся только всё собрать и наслаждаться музы… ах да, при окончательной сборке ещё важно для минимизации фона правильно развести землю. Как было выяснено за десятилетия до нас, C3 нужно присоединять к сигнальной земле, т.е. к минусу входа-входа, а все остальные минуса можно отправить на «звезду» возле конденсаторов фильтра. Если всё сделано правильно, то никакого фона не расслышать, даже если на максимальной громкости поднести ухо к колонке. Ещё одна «земляная» особенность, которая характерна для звуковых карт, не развязанных с компьютером гальванически – это помехи с материнки, которые могут пролезть через USB и RCA. Судя по интернету, проблема встречается часто: в колонках можно услышать звуки работы HDD, принтера, мышки и фон БП системника. В таком случае проще всего разорвать земляную петлю, заклеив изолентой заземление на вилке усилителя. Опасаться тут нечего, т.к. останется второй контур заземления через компьютер.
Регулятор громкости на усилителе я не стал делать, поскольку достать какой-нибудь качественный ALPS не удалось, а шуршание китайских потенциометров мне не понравилось. Вместо него был установлен обычный резистор 47 кОм между «землёй» и «сигналом» входа. Тем более регулятор у внешней звуковой карты всегда под рукой, да и в каждой программе тоже есть ползунок. Регулятора громкости нет только у винилового проигрывателя, поэтому для его прослушивания я приделал внешний потенциометр к соединительному кабелю.
Я угадаю этот контейнер за 5 секунд…
Наконец, можно приступать к прослушиванию. В качестве источника звука используется Foobar2000 → ASIO → внешняя Asus Xonar U7. Колонки Microlab Pro3. Главное достоинство этих колонок — это отдельный блок собственного усилителя на микросхеме LM4766, который можно сразу убрать куда-то подальше. Намного интереснее с этой акустикой звучали усилок от мини-системы Panasonic с гордой надписью Hi-Fi или усилитель советского проигрывателя Вега-109. Оба вышеупомянутых аппарата работают в классе АВ. Представленный в статье JLH переиграл всех вышеперечисленных товарищей в одну калитку, по результатам слепого теста для 3 человек. Хотя разницу было слышно невооружённым ухом и без всяких тестов – звук явно детальнее и прозрачнее. Весьма легко, например, услышать различие между MP3 256kbps и FLAC. Раньше я думал, что эффект lossless больше как плацебо, но теперь мнение изменилось. Аналогичным образом гораздо приятнее стало слушать нескомпрессованые от loudness war файлы — dynamic range меньше 5 Дб вообще не айс. Линсли-Худ стоит затрат времени и денег, ибо аналогичный брендовый усилок будет стоить намного дороже.
Материальные затраты
Трансформатор 2200 р. Выходные транзисторы (6 шт. с запасом) 900 р. Конденсаторы фильтра (4 шт) 2700 р. «Рассыпуха» (резисторы, мелкие конденсаторы и транзисторы, диоды) ~ 2000 р. Радиаторы 1800 р. Оргстекло 650 р. Краска 250 р. Разъёмы 600 р. Платы, провода, серебряный припой и пр. ~1000 р. ИТОГО ~12100 р.
Особенности
Понимая как работает усилитель в классе А, мы можем рассмотреть его и с аудиофильской точки зрения. Ситуация с искажениями на малых уровнях громкости вполне понятна: пока амплитуда сигнала не высока, усилитель работает в идеальных условиях и обеспечивает на выходе если не абсолютно совершенный сигнал, то что-то к нему максимально приближенное. Но возникает вопрос: что же происходит когда мы делаем музыку погромче?
До определенного момента — ничего страшного, но, как только пики сигнала приближаются к пороговым значениям (максимально открытому и закрытому состоянию лампы или транзистора), искажения будут расти существенно, как и у любого другого усилителя, после чего произойдет компрессия с выходом искажений за все мыслимые границы нормы.
Кто-то заметит, что любой усилитель можно перегрузить и загнать в искажения. Это справедливо. Но тонкость момента состоит в том, что усилители класса А по определению маломощны, а значит довести их до предельной нагрузки не составляет труда. Именно это происходит в те моменты, когда усилитель, только что воспроизводивший тихую камерную музыку с невероятным уровнем детализации, вдруг сваливает в неразборчивую кашу более громкое звучание симфонического оркестра.
Следующая специфическая особенность схемотехники касается блока питания. Это, кстати, один из важнейших компонентов любого усилителя, ведь энергия поступающая в акустику — это энергия блока питания, модулированная входящим сигналом. Выражаясь в более понятной автомобильной терминологии, блок питания — двигатель, а схема усилителя — руль.
Так вот, низкий КПД усилителя класса А и высокий ток покоя загоняет блок питания в довольно сложные условия: он должен иметь солидный запас мощности, чтобы, выдавая постоянно высокий ток, быть готовым мгновенно отдать в разы больше. После резкого всплеска сигнала конденсаторам блока питания необходимо зарядиться, т. е. взять дополнительную энергию от трансформатора, который и без того постоянно озадачен тем, чтобы поддерживать высокий ток покоя усилителя.
Далеко не все блоки питания способны справиться с такой задачей без побочных эффектов, поэтому, если звучание мощного усилителя, работающего в классе А, кажется вам медлительным, быстрая музыка смазывается, а бас получается неизменно гулким и размазанным во времени, — не удивляйтесь и не спешите обвинять в этом акустику или ее неудачное расположение в помещении.
Как работают усилители класса «А» 19.02.2021 19:46
У всего есть свое начало, и, если мы говорим о режимах работы усилителя, у истоков стоит конечно же класс А. Именно с него началась история усилителей в частности и электронного аудио в целом. Все, что было до — к электронике, да и вообще к электричеству отношения не имеет, а все что появилось после проще всего понять, зная как работают усилители класса А. Ну и самый удивительный факт: при том, что данная схемотехника уже успела справить свой столетний юбилей, она по-прежнему востребована и конкурирует на равных с самыми совершенными схемотехническими решениями XXI века.
Практика
Несмотря на все недостатки и технические особенности, усилители класса А по-прежнему производятся разными производителями и образуют весьма заметную нишу на рынке Hi-Fi техники, а если быть точным — в сегменте High End, где габаритами, энергопотреблением, сложностью эксплуатации и даже ценой можно пренебречь в угоду его величеству звуку.
Кроме того, с 1916 года и по настоящий момент времени на свет родилось немало талантливых инженеров, которые нашли способы существенно компенсировать вышеупомянутые проблемы.
Отличным примером вышесказанному является ламповый усилитель Octave V 16 Single Ended. Слова Single Ended в названии переводятся как «однотактный», что является техническим описанием режима работы ламп и, фактически, выступает синонимом понятия «класс А».
Для того, чтобы взбодрить классическую схемотехнику и приблизить эксплуатационные характеристики усилителя к современным реалиям, разработчики Octave воплотили в жизнь сразу несколько оригинальных решений, корректирующих режим работы. Адаптивная трехступенчатая настройка режима работы усилителя управляет величиной тока смещения сообразно максимальной амплитуде входящего сигнала, чтобы не держать схему усилителя в режиме высокого энергопотребления без необходимости.
А когда сигнал на входе отсутствует более двух минут, включается режим Ecomode, который понижает энергопотребление до 35%. Таким образом, усилитель, оставленный без присмотра, не будет без толку греть помещение.
За качество звучания разработчики боролись не меньше, чем за энергоэффективность, поэтому использовали высокотехнологичные трансформаторы с компенсацией магнитного поля, усовершенствованные каскады предварительного усиления, расширяющие диапазон воспроизводимых частот, а также самые совершенные схемы стабилизации, избавляющие от шумов и гула, которые усилители класса А с удовольствием демонстрируют даже при небольшом отклонении от рабочих параметров.
В результате, усилитель можно использовать с совершенно различной нагрузкой: от низкоимпедансной акустики до высокоимпедансных наушников, — не боясь вывести их из строя или просто выйти за пределы рабочего режима. Следящие электронные схемы перенастраивают выходные каскады автоматически.
Читая это, самое время вдохновиться и решить, что абсолютно все проблемы уже решены современными инженерами. Но не спешите, ведь нужно заглянуть в паспортные данные. А там картина вырисовывается крайне специфическая. При низких показателях шумов и искажения, имея без малого два десятка килограмм живого веса и потребляя от сети до 200 Вт, Octave V16 Single Ended выдает на акустике импедансом 4 Ом не более 8 Вт на канал при использовании самых мощных ламп. Для наушников этого вполне хватит, но где искать подходящие колонки?
Схемы ламповых усилителей. Часть 1. От Hi-Fi к High-End
В КАЧЕСТВЕ ВСТУПЛЕНИЯ
Специалисты и обозреватели единодушны в том, что усилители Hi-Fi, растиражированные в массовой аппаратуре и доступные каждому желающему, перестали быть эталоном качества. Выражаясь совковым жаргоном, Hi-Fi соотносится с High-End’oM как «хрущобы» и нынешние «дома улучшенной планировки». Однако провести точную границу между этими двумя категориями аппаратуры вряд ли удастся. Ведь с одной стороны есть супер Hi-Fi , а с другой — доступный High-End, отличить которые по качеству готового продукта — звучания голоса и музыки — не могут даже «набившие ухо» дегустаторы от звука. Например, известна равная итоговая оценка, которую дают как явно High-End овским усилителям Octave V50 и Arion Acoustics Adonis, так и похожим на них по цене, но, судя по рекламе, явно Hi-Fi йным усилителям комплекта Musical Fidelity и загадочному J.A. Michell Engineering Alecto. Для наших мест, прочно забытых богом прогресса, можно провести аналогию с ситуацией в радиоэлектронике в советские времена. С одной стороны — мощная радиопромышленность с ее «среднесерым ширнепотребом», вечно не успевающая за колесницей прогресса, а с другой — радиолюбители-конструкторы с единичными экземплярами высококачественной аппаратуры. И, наоборот, с одной стороны -налаженная заводская технология, а с другой — сигаретный пепел на плате, возможно, стакан водки, а может быть немытые руки после закусывания салом… Совокупность этих условий не давала выигрыша ни одной из сторон. В том все еще потустороннем для большинства из нас мире давно уже иные времена, поэтому можно с уверенностью считать High-End аппаратуру чем-то вроде самоделок, изготовленных в заводских условиях, или профессиональным подходом к радиолюбительскому конструированию (оно для нас всегда было эквивалентом творческого подхода!). А, скорее всего, это не столько оригинальные схемотехнические решения, сколько тщательная технологическая отделка несерийных или малосерийных экземпляров устройств ручной работы. Правда, есть две существенные особенности, которые вытекают из соединения вышеназванных противоположностей. Первая из них — явное пренебрежение и повсеместное нарушение всякого рода «табу», которых в практической радиоэлектронике великое множество, ради достижения заданного качества звучания. Вторая связана с исключительно высокой стоимостью аппаратуры, что позволяет применять любые нетривиальные, а порой — просто экзотические подходы к схемным и технологическим решениям. В свете такого подхода наиболее разительно выделяются в классе High-End’a усилители мощности звуковой частоты (УМЗЧ), акустические системы и проигрывающие устройства, особенно для виниловых дисков, хотя не исключены интересные решения и для CD проигрывателей. Итак, по необычному внешнему виду High-End УМЗЧ узнается сразу, но это не наша тема. Главное то, что мы сразу видим лампы, выпирающие наружу из корпуса у подавляющего числа конструкций. Это может быть либо весь ламповый усилитель, либо оконечный каскад на лампах, но удаление транзисторов из аппаратуры High-End — это общая тенденция, хотя случаются исключения. Такая же общая задача — обеспечить линейность режима усиления, для чего используют режим работы первого рода или класс А (без отсечки анодного тока) или в крайнем случае АВ, хотя последний при максимальных мощностях напоминает о своей нелинейности появлением искажений типа «ступеньки». Структурная схема УМЗЧ «до слез» проста, она известна каждому, кто хоть чуть-чуть знаком с этим делом. Несколько входов коммутируются обычным галетником, хотя в Hi-Fi уже имеются электронные коммутаторы, управляемые от общего процессора с дистанционным управлением. Сигнал сначала попадает в предварительный усилитель, а потом — в выходные каскады УМЗЧ. Нагрузкой усилителя являются акустические системы или колонки, подключаемые через согласующее устройство, которое корректирует АЧХ тракта усиления и может располагаться как в корпусе УМЗЧ, так и в колонках. Обычно сопротивление нагрузки лежит в пределах 1…16 Ом, поэтому выходная мощность усилителя различается при подключении разных колонок. Идеальным для такого класса аппаратуры считается уменьшение мощности вдвое при снижении сопротивления нагрузки наполовину. Усилитель охвачен отрицательной обратной связью (ООС) с разной степенью глубины и охвата: либо весь УМЗЧ, либо часть каскадов, либо установлена многопетлевая ООС — все зависит с одной стороны от необходимой устойчивости схемы, которую придает ей ООС, и от ограничения величины неизбежно возрастающих динамических искажений при увеличении глубины ООС с другой стороны. Итак, мы уже коснулись общих «табу», обычно не имеющих значения при конструировании High-EncTa. Это и крайне низкий КПД порядка 10…15% работающих в режиме класса А оконечных каскадов. Это и возврат к использованию ламп, что неизбежно вызывает применение выходных трансформаторов — грозы и бича конструкторов ушедшей эры ламповой техники. А если добавить силовой трансформатор и дроссели фильтров питания, то получится мощный набор источников низкочастотных магнитных полей. Однако технология — современная, и проблемы старые ушли сами собой: трансформатор делается с запасом по мощности, плотно пакетируется и облачается в кожух, он не греется и не гудит. А выходной трансформатор еще и настолько широкополосный, с равномерной АЧХ, что его влияние совсем не заметно. Очередное «табу» на увеличение массы и габаритов забыто при использовании навесного монтажа. Пайка одних деталей на лепестках контактов керамических ламповых панелек, а других — на монтажные шины из массивного медного прута в принципе не экономит объем, но зато нет и влияния элементов схемы друг на друга как при тесном печатном монтаже. Здесь же использовано совсем уже немыслимое в старые времена, да и для нынешнего Hi-Fi тоже, соединение блоков, плат и узлов между собой многожильными проводами, по массивности напоминающими силовые. Соберите 5-7 лакированных проводов диаметром 0,1 мм в один жгут, а потом заплетите косичку из 7-11 таких жгутов, обтяните все это изолирующей трубкой и покройте сверху оплеткой из меди, навитой на алюминиевый экран. Так или примерно так изготавливают провода как для монтажных работ, так и для соединения аппаратуры кабелями внутри комплекта. Для последних нужны хорошие клеммы и разъемы, не окисляющиеся, плотно прилегающие, прочные, словом, только один металл подходит для их изготовления и называют его — золото. Но это уже из области экзотики, которую можно купить за большие деньги. А вот еще одно «табу», или суеверие, или заклинание, как хотите, так и назовите, а касается оно двухтактных каскадов. Их теоретические параметры великолепны, однако практика показала, что несимметрия цепей возбуждения и плеч усиления существенно искажает воспроизводимый звук, поэтому все чаще в наше время возвращаются к однотактной схеме выходного каскада, как в УМЗЧ Art Audio Diavolo, схема которого приведена на рис.1 Она и надежней, и устойчивей, и менее капризна в настройке, чем двухтактная. Но все-таки в High-End’e последняя не только не сдает позиции, но и при высоком уровне технологии позволяет реализовать все ее преимущества, в том числе меньшее выходное сопротивление, улучшенную фильтрацию высших гармоник в нагрузке (для режима класса АВ), меньшие требования к фильтрации переменных составляющих в цепи питания. Схема типичного во всех отношениях двухтактного выходного каскада УМЗЧ Jadis DA5 изображена на рис.2.
Рисунок 1 Ламповый однотактный УМЗЧ Art Audio Diavol — принципиальная схема
Рисунок 2 Принципиальная схема двухтактного лампового усилителя мощности Jadis DA5
Здесь же показаны два вида ООС: местная на экранирующую сетку и глубокая на управляющую сетку первого каскада УМЗЧ. Уровень выходной мощности при разных сопротивлениях акустических систем подбирается подключением анодной цепи к разным выводам трансформатора. Для снижения фона сети питания в накальную цепь включается симметрирующий потенциометр. Нужно отметить, что первые каскады выполнены так, чтобы обеспечить необходимый минимум шумов, а последующие — необходимое усиление с помощью дифференциального построения каскада, как это сделано в Jadis DA5 (рис.3). Как видим, еще одно табу нарушено -вместо разделительных конденсаторов, которые всегда стояли в ламповых каскадах, осуществлена гальваническая связь, что для конструктора — лишняя головная боль при расчетах режимов, а для слушателей этих чудес света — бальзам на душу, так как отсутствуют искажения из-за ограничивающих спектр сигнала разделителей.
Рисунок 3 Фрагмент принципиальной схемы лампового усилителя Jadis DA5
А вот еще одно «неправильное» решение — отсутствуют предусилители и регуляторы тембра. Тому «виной» — равномерная АЧХ, ведь в таких устройствах коэффициент гармоник не превышает десятой доли процента, а неравномерность АЧХ — доли децибела. Этот принцип компоновки УМЗЧ можно назвать конструированием без излишеств, к нему же присоединяется и фирма Sony: в ее самых свежих разработках усилителей вместо стереоканалов усиления — двойное моно. Надо полагать, качество записи на CD носителях и ширина стереобазы позволяют обойтись без баланса каналов. Впрочем, как говорят знатоки, стереоэффект можно извлекать даже из монофонических устройств, если, конечно, их не менее двух. Есть один существенный недостаток аппаратуры Hi-Fi, устранение которого в усилителях High-End следует отнести к достижениям прогресса. Знатоки рекомендуют для Hi-Fi размещение оконечных каскадов усиления в ящиках звуковых колонок. И это не в целях экономии места. Дело в том, что в усилителях мощности с сильной отрицательной обратной связью при увеличении емкостной нагрузки наблюдаются явления сдвига фазы, в результате чего вместо отрицательной возникает паразитная положительная обратная связь. В случае совместного размещения обоих усилителей нельзя было бы обойтись без подсоединяемого к выходу усилителя провода, идущего к громкоговорителю; этот провод при некоторых обстоятельствах как раз может оказаться такой емкостной нагрузкой. Таким образом, при совместном размещении громкоговорителей и усилителя мощности Hi-Fi уменьшаются габариты устройства с коммутацией, четырьмя источниками программ и предварительным усилителем, а с другой стороны в блоке громкоговорителей исключается нежелательный сдвиг фаз в усилителе мощности. Все это несущественно для High-End УМЗЧ, в которых технологически компенсируется емкость нагрузки. И вообще, особую осторожность необходимо соблюдать при использовании экранированного провода. Совершенно неверно экранировать каждый провод, несущий звуковую частоту. В данном случае чрезмерная предусмотрительность приносит лишь вред, потому что экран и жила провода образуют емкостный шунт, который в высокоомных цепях неизбежно вызывает потери на высших звуковых частотах. Проектируя шасси, надо стремиться к тому, чтобы обойтись минимумом экранированного провода. Для достижения этой цели необходимо максимально укоротить все провода, несущее звуковую частоту. Если позаботиться о том, чтобы провода, идущие на входы предварительных каскадов, не были бы слишком близко расположены друг к другу, то экранировать в основном придется лишь цепь управляющей сетки первой лампы предварительного усилителя. В сомнительном случае лучше в 5-10 мм от «подозрительного» провода установить металлический экран, нежели применять экранированный провод, так как в этом случае паразитная емкость монтажа будет меньше. Эти правила не касаются усилителей High-End, потому что в них внутренний монтаж и соединение усилителя с колонкой выполняются специальными многожильными проводами, о которых уже сказано выше. Кстати, есть сообщения от радиолюбителей о том, что они меняли в своих старых конструкциях соединительные провода на новые и получали совершенно неожиданное для них улучшение качества звучания. Это лишь подтверждает известную истину, что все новое — это хорошо забытое старое.
Простые схемы
Открывает наш парад схемотехники High-End одноламповый усилитель В. Борисова (Р-3/76) на лампе типа 6Ф5П, в баллоне которой находятся две самостоятельные лампы -триод и пентод с общей нитью накала. Триод используют в каскаде предварительного усиления напряжения, пентод — в каскаде усиления мощности. Чувствительность усилителя 100 мВ. Выходная мощность, измеренная при входном сигнале частотой 1000 Гц, -1,5 Вт при коэффициенте нелинейных искажений менее 3%. Полоса частот равномерно усиливаемых колебаний 50…20 000 Гц. На вход усилителя можно подавать сигнал от пьезоэлектрического звукоснимателя или от других источников сигналов звуковой частоты. Честно говоря, такая схема рекомендована автором для начинающих, однако, в ней налицо все признаки схемотехники High-End, если, конечно, добавить соответствующую технологию. Да и начинать ведь с чего-то нужно. Итак, принципиальная схема усилителя приведена на рис.4. Напряжение звуковой частоты поступает на двухгнездную колодку LU1, параллельно которой включен переменный резистор R1, являющийся регулятором громкости. С движка резистора сигнал подается на управляющую сетку триода Л1а и усиливается им. Чем выше (по схеме) находится движок резистора, тем большее напряжение сигнала на управляющей сетке. Кстати, обозначения на схеме и изображения элементов выполнены в тех стандартах, которые применялись в момент опубликования использованных материалов.
Рисунок 4 Принципиальная схема High-End однолампового усилителя В. Борисова
Для нормальной работы радиолампы на ее управляющую сетку необходимо подать отрицательное по отношению к катоду напряжение смещения. В данном усилителе начальное смещение образуется при прохождении анодного тока через резисторы R3 и R4. Управляющая сетка триода соединена через резистор R1 с «заземленным» проводником и на ней, следовательно, относительно катода действует отрицательное напряжение, равное падению напряжения на катодных резисторах -1,7 В. Из-за введения резисторов R3 и R4 между катодом и управляющей сеткой лампы возникает отрицательная обратная связь по переменному току, снижающая усиление каскада. Для ослабления действия этой обратном связи параллельно резистору R3 подключен конденсатор С1. Резистор R2 выполняет роль нагрузки анодной цепи триода. Создающееся на нем напряжение усиленного сигнала через разделительный конденсатор С2 подается на управляющую сетку пентода Л1б. Усиленный им сигнал НЧ через выходной трансформатор Тр1 поступает на звуковую катушку электродинамической головки прямого излучения Гр1 и преобразуется ею в звуковые колебания. Резистор R8 и конденсатор С7 этого каскада выполняют такую же функцию, что и аналогичные им детали первого каскада. С помощью конденсатора С6 и резистора R6 создается отрицательная обратная связь по переменному току, необходимая для регулирования тембра звука в области высших частот. Чем выше (по схеме) находится движок переменного резистора R6, тем большее напряжение обратной связи поступает на сетку пентода, тем меньше усиление каскада на высших частотах рабочего диапазона. В таких случаях говорят, что высокие частоты усиливаемого сигнала «срезаются». Резистор R9, соединяющий незаземленный вывод вторичной обмотки выходного трансформатора с резисторами R3, R4, создает вторую цепь отрицательной обратной связи. Охватывая оба каскада, она позволяет получить более равномерное усиление сигналов во всем диапазоне рабочих частот и уменьшить нелинейные искажения. Усилитель питается от сети переменного тока напряжением 220 В. Блок питания образуют трансформатор Тр2 и двухполупериодный выпрямитель на диодах Д1-Д4, включенных по мостовой схеме. Пульсации выпрямленного напряжения сглаживаются конденсатором С8. Постоянное напряжение подается на анод пентода Л1б (через обмотку I выходного трансформатора) непосредственно с конденсатора С8, а на экранирующую сетку пентода — через развязывающий фильтр R7C4. Анодное напряжение на первый каскад усилителя подается через дополнительный развязывающий фильтр R5C3. Применение развязывающих фильтров позволяет предотвратить паразитную обратную связь между каскадами через общий источник питания. Лампа накаливания Л2, включенная параллельно обмотке III трансформатора, выполняет роль индикатора включения усилителя. Для блока питания можно использовать трансформатор мощностью 40-60 Вт любого типа, в том числе и от ламповых приемников или радиол. На обмотке II должно быть переменное напряжение 190-210 В, на накальной обмотке III — 6,3 В. Можно применить и самодельный трансформатор, выполненный на сердечнике Ш22Х40. Для напряжения сети 220 В обмотка I должна содержать 1040 витков провода ПЭВ-1 0,25, обмотка II — 965 витков ПЭВ-1 0,15, обмотка III — 34 витка ПЭВ-1 0,6. Выходной трансформатор Тр1 — ТВЗ-2-1 (унифицированный выходной трансформатор звукового канала телевизоров). Его можно заменить трансформатором от любого лампового радиоприемника или телевизора с однотактным выходным каскадом в усилителе НЧ. Большая часть постоянных резисторов и электролитические конденсаторы С1 и С7 смонтированы на самодельной монтажной плате, размещенной в подвале шасси возле ламповой панельки. Конденсатор С2 припаян непосредственно к выводам 1 и 9 ламповой панельки (рис. 4), конденсатор С5- к выводам первичной обмотки выходного трансформатора, резисторы R7 и R5 — к выводам положительных обкладок конденсаторов С8, С4 и СЗ. Держатель предохранителя с предохранителем и выключатель питания В1 находятся на задней стенке шасси. Не следует забывать, что в цепях питания усилителя действуют достаточно высокие напряжения. Поэтому, приступая к испытанию и налаживанию усилителя, надо быть особенно внимательным и, разумеется, не касаться проводников с повышенным напряжением. При замене деталей или изменениях в монтаже усилитель должен быть отключен от сети. После проверки монтажа по принципиальной схеме резистор R9 следует отпаять от резисторов R3 и R4, а конденсатор Сб — от анода пентода. Спустя 40-50 с после включения питания, когда катоды лампы прогреются, в головке должен появиться слабый фон переменного тока, являющийся признаком работоспособности блока питания и выходного каскада усилителя. Если теперь движок переменного резистора R1 поставить в крайнее верхнее (по схеме) положение и коснуться его незаземленного вывода, например, пинцетом, то в головке должен появиться фон переменного тока. Это признак работоспособности усилителя в целом. Теперь движок регулятора громкости следует поставить в крайнее нижнее (по схеме) положение, измерить и, если надо, скорректировать режимы работы лампы. Рекомендуемые напряжения па ее электродах, указанные на принципиальной схеме, измерены относительно общего («заземленного») проводника питания вольтметром с относительным входным сопротивлением 10 кОм/В. Без ущерба для работы усилителя эти напряжения могут быть больше или меньше на 15…20%. Если измеренные напряжения; значительно завышены, следует ввести между выпрямителем и усилителем дополнительный развязывающий фильтр R10C9 (он показан на рис.4 штриховыми линиями) и подобрать резистором R10 (он должен быть мощностью 1 Вт) требующееся напряжение. Напряжение смещения на катоде триода подбирают резистором R3, на катоде пентода — резистором R8. Затем к входу усилителя можно подключить звукосниматель и проиграть грампластинку. Звук должен быть громким и плавно изменяться при вращении ручки переменною резистора R1. При восстановлении соединения резистора R9 с катодной цепью триода громкость звучания головки несколько уменьшится, а качество звука улучшится. Если же после подключения резистора R9 появится самовозбуждение усилителя, значит между выходным и входным каскадами возникла положительная обратная связь и усилитель превратился в генератор колебаний НЧ. Чтобы устранить что явление, достаточно поменять местами подключение выводов обмотки II выходного трансформатора. После восстановления соединения конденсатора С6 с анодной цепью пентода и проверки плавности регулирования тембра звука переменным резистором R6, налаживание усилителя можно считать законченным. Для начала мы привели подробное описание принципа действия, конструкции и настройки, чтобы иметь пример того, как следует работать над собственной конструкцией. В дальнейшем те подробности, которые вполне может заменить личный опыт радиолюбителя, будут опускаться, больше внимания будет уделяться нюансам схемы и особенностям конструкции.
Множество схем, разработанных радиолюбителями, было предназначено для проигрывателей грампластинок, особенно переносных. Это объясняется тем, что исторически первые УМЗЧ ставились в патефоны, и получался так называемый радиограммафон. Примером такой схемы, которая питалась от сети 220 В, был двухламповый усилитель В. Михайлова (БЖР-5/59), показанный на рис.5. Эта схема с открытым входом, как и предыдущая, к тому же имеются и другие черты сходства обеих конструкций, поэтому обратим внимание на особенности.
Рисунок 5 Принципиальная схема однотактного лампового усилителя В. Михайлова
Во-первых, отсутствует глубокая ООС с выхода усилителя ко входу, имеется только местная ООС в каждом каскаде — это R2 и R6, не имеющие блокировочных конденсаторов. Во-вторых, питание схемы, выходная мощность которой при коэффициенте нелинейных искажений 3% составляет 4 Вт, осуществляется по однотактной схеме, поэтому анодная обмотка Тр2 имеет столько же витков, как и первичная сетевая. Конструктивной особенностью УМЗЧ, устанавливаемых в радиограммафонах, является расположение его вдали от приводного двигателя, насколько это возможно в ограниченном объеме чемоданчика, в котором заключена вся схема. Дополнительным фактором, защищающим УМЗЧ от наводок со стороны двигателя, является экранирование провода, идущего от звукоснимателя к R1 и далее к сетке Л1, а также всего усилителя в целом.
По-своему отличной от предыдущих выглядит схема батарейного проигрывателя Е. Додонова (Р-5/61), который изображен на рис.6. Судя по названию, питание устройства осуществляется от батареи, скорее всего, аккумуляторной, для чего в состав блока питания введен преобразователь-генератор переменного тока на напряжение 150 В.
Рисунок 6 Принципиальная схема лампового усилителя с преобразователем Е. Додонова
Две лампы невысокой мощности позволяют получить на выходе усилителя 1 Вт, что при достаточно высоком к.п.д. усилителя не слишком разорительно для аккумулятора. Высокий к.п.д. получается путем перевода оконечного каскада усилителя в режим работы класса С с углом отсечки около 60 град. Запас по мощности не реализуется полностью, так как для снижения искажений введена ООС с выходной обмотки трансформатора Тр1 на катод входной лампы Л1 через цепочку R14-C6. В первом каскаде применена лампа 6Ж5П, которая имеет достаточно высокую крутизну статической ВАХ по сравнению с другими маломощными пентодами. Накал ламп запитывается непосредственно от батареи постоянного тока, поэтому нити накала обеих ламп включены последовательно. Для устранения самовозбуждения по цепи питания служат конденсаторы СЗ, С5, С8, резисторы R12, R13. Преобразователь питания собран на импульсных транзисторах П4Б, которые можно заменить на любые р-п-р транзисторы с предельно допустимой мощностью 10 Вт.
Своеобразным развитием одноламповой темы является простой стереофонический усилитель (рис.7), приведенный Г. Гендиным в литературе «Самодельные УНЧ», МРБ, 1964. Здесь используется триод-пентод типа 6ФЗП, который позволяет развить мощность в 1,5 Вт в полосе частот 60…12000 Гц при входном сигнале 250 мВ.
Рисунок 7 Принципиальная схема стереофонического лампового усилителя Г. Гендиным
Этот усилитель сделан полностью под использование его для стереозвука. Для этого резистор регулятора громкости R1 выполнен сдвоенным, а в катодной цепи первого каскада стоит резистор R6 для подстройки стереобаланса между каналами. Сразу заметен недостаток — при воспроизведении монофонических программ работает только один канал, а второй при этом просто греет атмосферу. Отсутствие охватывающей весь усилитель ООС создает риск самовозбуждения, поэтому в усилителе предприняты жесткие меры по его предупреждению. Во-первых, в цепи питания имеется фильтр с частотой среза 100 Гц, состоящий из дросселя Др1 и емкостей С7, С8. Во-вторых, во входной цепи первого каскада осуществлена ООС через цепочки резисторов R4, R2 и балансный резистор R6. В-третьих, на сетке второго каскада действует ООС через делитель R7-R8. Для снижения влияния температурной нестабильности напряжения накала на параметры ламп параллельно обмоткам накала, выполненным отдельно для каждой лампы, подключены подстроечные резисторы R11 на 100 Ом. Их средняя точка соединена с массой через резистор R13, который является частью делителя напряжения анодного питания R12-R13. Такое подключение создает положительное смещение 20…30 В на средней точке накальной обмотки и позволяет подавить низкочастотный фон из-за наводок напряжения накала в цепи полезного сигнала. В качестве выходного и трансформатора питания можно использовать такие же, как описаны в схеме В. Борисова, добавив к силовому трансформатору дополнительную обмотку накала.
Более продвинутой разновидностью этой схемы является стереофоническая приставка А. Воробьева-Обухова, которая рассчитана на воспроизведение стереофонических записей с помощью обычной монофонической системы (Р-10/72). Это уже достаточно сложный усилитель, но еще сохраняет такие формальные признаки простого, как, например, наличие единственной лампы в канале, малая мощность, ограниченное количество деталей. Работа приставки основана на свойстве стереоэффекта проявляться на частотах выше 200-300 Гц. Это явление позволяет для усиления частот ниже 200-300 Гц использовать монофонический усилитель, а для усиления частот свыше 200-300 Гц — два простейших усилителя приставки со стереофонической акустической системой. Устройство акустических систем в этом случае резко упрощается, поскольку большинство усложнений в них вызвано необходимостью хорошего воспроизведения частот до 200-300 Гц, о чем заботиться не приходится, так как с этой задачей с успехом справляется отдельный усилитель НЧ. Приставка (рис.8) содержит два одноламповых усилителя на лампах Л2 и Л2′ и смесительный каскад на лампе Л1. При воспроизведении грамзаписи низкие частоты правого и левого каналов звукоснимателя поступают на смесительный каскад и далее на вход усилителя НЧ радиолы. Высокие частоты правого и левого каналов усиливаются раздельными усилителями НЧ приставки. Низкие частоты отфильтровываются цепочками C6R6, C6’R6′ и цепью автоматического смещения, благодаря малой емкости конденсаторов СЗ, СЗ’ и С4, С4′. Потенциометры R2, R2′ служат для регулировки громкости. С помощью потенциометров R10, R10′ можно установить стереобаланс и необходимую максимальную мощность за счет регулировки глубины обратной связи в усилителях приставки. Выход смесительного каскада рассчитан на подключение к усилителю с входным сопротивлением не ниже 470 кОм. Питается приставка от выпрямителя усилителя.
Рисунок 8 Принципиальная схема лампового усилителя А. Воробьева-Обухова
При монтаже особое внимание следует обратить на экранировку сигнальных цепей ламп приставки. Шнур, соединяющий выход приставки с усилителем, необходимо выполнить экранированным проводом. Имеет смысл заземлить среднюю точку накальной обмотки силового трансформатора усилителя, либо подать на нее положительное смещение 10-20 В от источника анодного питания, как в предыдущей схеме. Громкоговорители должны иметь сопротивление звуковой катушки 4-6 Ом. В качестве потенциометров R2, R2′ используются спаренные резисторы СП-3-7.
Следующий УМЗЧ без выходного трансформатора Л. Кононовича (Р-б/59) с еще большой натяжкой можно назвать простым. Он содержит три лампы, тонкомпенсированный регулятор громкости, раздельный регулятор тембра по нижним и верхним частотам и своеобразную схему выходного каскада, собранную из последовательно включенных ламп типа 6П18П, которая получила название «Тандем» (рис.9). Возможность бестрансформаторного включения громкоговорителя в таких схемах объясняется тем, что при наличии конденсатора большой емкости С14 обе лампы Л2 и ЛЗ оказываются включены по переменному току параллельно, что снижает выходное сопротивления «Тандема» до величины меньшей, чем сопротивление ведущей лампы Л2. Режим ее выбран таким образом, что выходное сопротивление каскада близко к 100 Ом, а нагрузкой его служат два включенных последовательно громкоговорителя на 16 Ом каждый.
Рисунок 9 Принципиальная схема лампового усилителя мощности Л. Кононовича
Такие схемы не имели большого распространения, потому что получить выходное сопротивление в мощных каскадах менее 600…1000 Ом не удается, а для подключения к ним необходимы специальные высокоомные громкоговорители. В данной схеме за счет приближения режима лампы Л1 к насыщению, существенному рассогласованию выходного сопротивления и нагрузки и наличию глубокой ООС с выхода усилителя на катод лампы Л1б выходная мощность снижена до 2 Вт. К достоинствам данной схемы можно отнести широкую полосу усиливаемых частот 30…20000 Гц, которую ограничивают только разделительные конденсаторы. Также положительным качеством является большая глубина регулировки тембра, которая достигает 20 дБ. И, наконец, существенным достоинством является большой запас устойчивости усилителя во всей полосе частот. Перечисленные достоинства обеспечивают высокое качество звучания УМЗЧ.
В заключение обзора простых схем приведем «иностранный» образец радиолюбительского творчества, который был опубликован в Р-1/65. Это стереофонический усилитель болгарина И. Кусева. Усилитель (рис.10) предназначен для стереофонического и монофонического воспроизведения программ радиовещательных станций и граммофонных пластинок. Максимальная выходная мощность каждого канала усилителя б Вт при коэффициенте нелинейных искажений не более 1%, номинальная мощность 1,5 Вт, при коэффициенте нелинейных искажений не более 0,8 %.
Рисунок 10 Принципиальная схема стереофонического лампового усилителя мощности И. Кусева
Глубина регулировки тембра низших звуковых частот на частоте 20 Гц/дБ. Глубина регулировки тембра высших звуковых частот на частоте 16 кГц +12 дБ. Усилитель воспроизводит полосу звуковых частот 20…16000 Гц при неравномерности частотной характеристики не более 0,5 %. Первый каскад обоих каналов усилителя выполнен на двух триодах лампы ЕСС82 по схеме катодного повторителя. На входах вторых каскадов усиления включены регуляторы частотной характеристики R9 — R10. Этому регулятору следует уделить особое внимание, так как он позволяет изменять частотную характеристику усилителя, не уменьшая величину обратной связи. Регуляторы тембра высших R25, R25a, и низших R21, R22 звуковых частот включены в цепи частотно-зависимой обратной связи между вторым и третьим каскадами усилителя. Регулятор стереобаланса R37 включен между третьим и четвертым каскадами обоих каналов усилителя. Два последних каскада усилителя охвачены частотно-зависимой отрицательной обратной связью глубиной 20 дБ. Напряжение обратной связи с вторичных обмоток выходных трансформаторов подается в цепи катодов ламп предоконечных каскадов усилителя. Кроме плавной, в усилителе имеется ступенчатая регулировка тембра на четыре положения: «нормальное», «оркестр», «речь», «бас», позволяющая получить желаемый тембр звучания как высших, так и низших звуковых частот. Выходные каскады каждого канала усилителя выполнены на лампах EL84 по ультралинейной схеме. Каждый канал усилителя нагружен на два громкоговорителя 6 Вт и 1,5 Вт. Чтобы улучшить звучание громкоговорителей их рекомендуется незначительно переделать, руководствуясь эскизами, приведенными на рис 11
Рисунок 11
Лампу ЕСС82 можно заменить лампой 6Н1П, лампу ЕСС83 — лампой 6Н2П, лампу EL84 — лампой 6П14П. Кенотрон EZ81 заменяется двумя, параллельно соединенными кенотронами 6Ц4С или одним кенотроном типа 5ЦЗС. Применительно к отечественным лампам детали имеют следующие данные. Выходной трансформатор Тр1 (Тр2) собран на сердечнике, набранном из пластин Ш-20, толщина набора 25 мм (площадь окна 5,4 см2). Его первичная обмотка содержит 2500 витков провода ПЭЛ 0,18. Отвод к экранирующей сетке делается от 500-го витка, считая от вывода 2. Вторичная обмотка состоит из двух последовательно соединенных секций: 57 витков провода ПЭЛ 1,0 и 60 витков ПЭЛ 0,12. Выводы первой секции соединяются с зажимами П, к которым подключается и нагрузка — два параллельно соединенных громкоговорителя ЗГД-2 (или 4ГД-2). Силовой трансформатор мощностью 120 Вт собран на сердечнике, набранном из пластин Ш-30, толщина набора 48 мм, площадь окна 14,6 см2. Обмотки содержат: сетевая — 440+320 витков провода ПЭЛ 0,69 + ПЭЛ 0,51; повышающая — 870+870 витков провода ПЭЛ 0,25; накала кенотрона — 19 витков провода ПЭЛ 1,2; накала ламп: 24 витка ПЭЛ 0,96 и 24 витка ПЭЛ 0,72. Дроссель фильтра Др1 собран на сердечнике Ш-19хЗО, зазор 0,2 мм. Его обмотка состоит из 4500 витков провода ПЭЛ 0,22. Дроссели в цепи сетевой обмотке силового трансформатора содержат по 110 витков провода ПЭЛ 0,12. Они намотаны на карбонильных сердечниках СЦГ-2.
ДАЛЬШЕ
Звук
Поскольку данный текст является частью большого цикла публикаций, посвященного различным типам усилителей, в процессе его подготовки было проведено одно большое сравнительное прослушивание, в котором участвовали усилители различных классов. Для придания прослушиванию достаточной степени объективности было выбрано две модели напольных колонок.
Одна из них была заведомо тяжелой нагрузкой с низкой чувствительностью — крупным тугим басовиком, и требовала высокой подводимой мощности. Вторая же была призвана стать обратной стороной медали: предельно легкой нагрузкой, способной сработаться с любым, даже маломощным усилителем. И во всех случаях эта схема тестирования была вполне рабочей до того момента пока на сцене не появился Octave V16 Single Ended с его 8 Вт на канал.
На тяжелой нагрузке искажения были столь реальны, что их, казалось, можно было потрогать, а нагрузка, ранее известная как легкая, успешно справилась с ролью тяжелой. За неимением под рукой еще одной пары колонок мощностью в несколько ватт и с чувствительностью выше 100 дБ роль легкой нагрузки выполнили наушники.
С колонками, которым по паспорту требуется не менее 25 Вт, Octave V16 Single Ended сработался на удивление неплохо. Если не злоупотреблять громкостью, можно в полной мере оценить живой, открытый и чистый звук, который на спокойных аудиофильских записях просто превосходен.
Ситуация осложняется, когда дело доходит до более динамичной музыки, а на рок-композициях усилитель с удовольствием сваливает звучание гитар в кашу, давая в качестве бонуса вполне различимую на слух компрессию. Спасает лишь тот факт, что компрессия и искажения в исполнении ламп в отличие от транзисторов придает звучанию довольно приятную окрашенность.
Если же попытаться уменьшить нагрузку на усилитель, понизить громкость, а затем подсесть поближе, чтобы не потерять в звуковом давлении — картина исправляется. И грязи нет, и деталей больше, и компрессия не ощущается. Здесь я замечу, что по габаритам этот усилитель совсем небольшой, его можно поставить не только в стойку, но даже на стол, для использования с наушниками и полочными мониторами ближнего поля.
В полной мере прочувствовать принадлежность усилителя к категории High End удалось в наушниках. Совершенно сумасшедшая детальность, открытое, объемное и тембрально богатое звучание, управляемый и четкий бас — все то, о чем можно мечтать. И, что характерно, даже на быстрой тяжелой музыке усилитель начал вести себя достойно. Никакой вальяжности, никакой каши, никакой гулкости в НЧ-диапазоне. Вот что значит — обеспечить усилителю класса А оптимальный режим работы.
Аудиоусилители класса D: особенности и преимущества. Часть 1
В последние годы большой популярностью пользуются усилители класса D, хотя впервые они были представлены еще в 1958 г. Что представляют собой усилители класса D? Чем они отличаются от других типов усилителей? Почему этот класс особенно хорошо подходит для применения в аудиоустройствах? Ответы на все эти вопросы содержатся в предлагаемой статье.
Преимущества усилителей класса D
Задачей звуковых усилителей является передача входного звукового сигнала к системе воспроизведения звука с необходимыми громкостью и уровнем мощности — точно, эффективно и с малыми помехами. Звуковые частоты — это диапазон от 20 Гц до 20 кГц, соответственно усилитель должен обладать хорошей АЧХ во всем диапазоне (или же в более узкой области, если речь идет о динамике с ограниченной полосой воспроизведения, например о среднечастотном или высокочастотном динамике в многополосной системе). Мощности могут быть разными (в зависимости от конкретного устройства): милливатты в наушниках, ватты в звуковых телевизионных системах и аудио для ПК, десятки ватт в домашних и автомобильных звуковых системах, сотни и более ватт в мощных домашних и концертных звуковых системах. В обычных аналоговых звуковых усилителях транзисторы в линейном режиме применяются для генерации выходного напряжения, которое точно масштабирует входное. Коэффициент передачи по напряжению обычно достаточно велик (около 40 дБ). Если усиление в прямом направлении входит в цепь с обратной связью, то и коэффициент усиления всей цепи с обратной связью будет велик. Обратная связь в усилителях применяется часто, так как большой коэффициент передачи в сочетании с обратной связью улучшает качество усилителя: подавляет искажения, вызванные нелинейностями в прямой цепи, и снижает шумы от источника питания за счет того, что снижается коэффициент влияния источника питания (PSRR). В обычном транзисторном усилителе транзисторы выходного каскада обеспечивают непрерывный сигнал на выходе. Существует множество различных инженерных решений для аудиосистем: усилители классов A, AB и B. Во всех, даже в самых эффективных, линейных выходных каскадах рассеивание мощности больше, чем в усилителях класса D. Это свойство усилителей класса D обеспечивает им преимущество в различных системах, так как малое рассеивание мощности означает меньший нагрев схемы, позволяет экономить место на плате, снижает стоимость и продлевает срок автономной работы батарей в портативных устройствах.
Сравнение усилителей разных классов
Как правило, выходные каскады линейных усилителей напрямую подключаются к громкоговорителю (лишь иногда через конденсатор). Если в выходном каскаде применяются биполярные транзисторы (БТ), то они обычно работают в линейном режиме, с большим напряжением между коллектором и эмиттером. Кроме того, выходной каскад может быть реализован на МОП-транзисторах, как это показано на рисунке 1. В линейных выходных каскадах мощность рассеивается, так как генерация напряжения VOUT неизбежно ведет к ненулевым значениям IDS и VDS, как минимум, в одном из выходных транзисторов. Величина рассеиваемой мощности зависит от величины смещения выходных транзисторов.
Рис. 1. Линейный выходной каскад на МОП-транзисторах
В схемах усилителей класса А один из транзисторов используется в качестве источника постоянного тока, обеспечивающего максимальную величину тока, которая может быть необходима динамику. В результате, с помощью усилителей класса А можно добиться хорошего качества звука, но потеря энергии в таких схемах чрезвычайно велико по той причине, что через выходные транзисторы протекает большой постоянный ток (здесь он не приносит пользы), а через громкоговоритель, где он, собственно, и нужен, ток не проходит. В схемах класса В ток смещения отсутствует, и благодаря этому рассеивается намного меньше энергии. В устройствах данного класса выходные транзисторы работают в двухтактном режиме, то есть транзистор MH «выдает» ток, а транзистор ML «отводит». Однако качество звука при использовании схем класса В оставляет желать лучшего из-за нелинейных искажений (типа «ступеньки»), которые возникают при переключении транзисторов. Класс АВ представляет собой компромисс — сочетание класса А и класса В; здесь присутствует постоянный ток смещения, но намного меньший, чем в схемах класса А. Использование малого тока смещения позволяет избежать искажений типа «ступеньки», добиваясь высокого качества звука. Потеря мощности в данном классе схем находится в диапазоне между потерей в классах А и В, но обычно оно лишь чуть больше, чем в усилителях класса В. Схема усилителя класса AB подобна схеме усилителя класса B и способна выдавать или отводить большой выходной ток. К сожалению, даже в удачных конструкциях класса АВ потеря мощности остается значительным по причине того, что среднее значение выходного напряжения очень отличается от значений напряжения питания. Большой размах изменения напряжения «сток-исток» приводит к большим значениям произведения IDSVDS, а значит, и к большим потерям мощности. Усилители класса D благодаря принципиально другой топологии отличаются уникально низкой потерей мощности по сравнению со всеми упоминавшимися выше типами устройств.
Рис. 2. Схема усилителя класса D без цепи ОС
В схеме усилителя класса D (см. рис. 2) напряжение на выходе усилителя переключается между положительным и отрицательным источниками питания, и, таким образом, на выходе наблюдается последовательность импульсов. Такая форма сигнала способствует малой потере мощности, так как через выходные транзисторы, когда они закрыты, ток не течет, а когда они проводят ток, значение напряжения VDS мало, поэтому мало и произведение IDSVDS. Поскольку большинство аудиосигналов не являются последовательностью импульсов, в состав схемы усилителя класса D непременно входит модулятор, который преобразует аудиосигнал в импульсный. Спектр импульса включает как, собственно, аудиосигнал, так и значительные высокочастотные составляющие, обусловленные процессом модуляции. Между выходным каскадом и динамиком обычно стоит фильтр нижних частот (ФНЧ), чтобы минимизировать электромагнитные помехи и предотвратить подачу на динамик высокочастотных сигналов.
Рис. 3. Дифференциальный переключающийся выходной каскад с индуктивно-емкостным фильтром нижних частот
На фильтре (см. рис. 3) также нельзя допускать потери мощности, чтобы сохранить тот выигрыш, который обеспечивает переключающаяся схема выходного каскада. Как правило, в фильтре используют конденсаторы и индуктивности, а единственным элементом, где происходит потеря мощности, остается динамик. На рисунке 4 сравниваются теоретически рассчитанные величины рассеиваемой мощности в выходных каскадах (PDISS) усилителей классов А и В с измеренным значением рассеиваемой мощности для усилителя AD1994 класса D.
Рис. 4. Потеря мощности в выходных каскадах усилителей класса A, B, и D
Рассеиваемая мощность рассчитана в зависимости от выходной мощности (PLOAD), подаваемой на динамик, при синусоидальном сигнале звуковой частоты. Выходная мощность нормирована к уровню PLOAD max, при котором синусоидальный сигнал «срезается» сверху так, что суммарный коэффициент гармонических искажений составляет 10%. Вертикальная линия показывает мощность PLOAD, при которой начинается «срезание» синусоиды. На рисунке видно, что значительные различия в величине рассеиваемой мощности наблюдаются в широком диапазоне мощности на нагрузке и особенно явны при больших и средних нагрузках. В начале «срезания» синуса потери в выходном каскаде усилителя класса D в 2,5 раза меньше, чем в каскаде класса В и в 27 раз меньше, чем в классе А. Стоит отметить, что в выходном каскаде усилителя класса А потеря энергии больше, чем в громкоговорителе — это результат использования большого постоянного тока смещения. Коэффициент полезного действия выходного каскада (Eff) определяется выражением:
Eff = PLOAD /(PLOAD+ PDISS).
В начале «срезания» синуса КПД составляет 25% для усилителей класса А, 78,5 — для усилителей класса В и 90 — для усилителей класса D (см. рис. 5). Наилучшие значения КПД для усилителей классов А и В часто приводятся в литературе.
Рис. 5. КПД выходных каскадов усилителей классов A, B и D
Преимущества усилителей класса D в том, что они позволяют расширить диапазон рабочих мощностей. Это важно для воспроизведения звука, так как длительные средние уровни мощности при высокой громкости не используют весь динамический диапазон, а короткие мощные пики достигают уровня PLOAD max. Так, для звуковых усилителей PLOAD = 0,1. PLOAD max — это разумный рабочий уровень мощности, на котором следует определять PDISS. На этом уровне потеря мощности в усилителях класса D в девять раз ниже, чем в классе В и в 107 раз ниже, чем в классе А. Для звукового усилителя со значением PLOAD max = 10 Вт рабочий уровень в 1 Вт представляется оптимальным для прослушивания. При таких условиях в выходном каскаде класса D рассеивается 282 мВт; в классе В — 2,53 Вт; а в классе А — 30,2 Вт. КПД усилителей класса D при данной мощности снижается до 78 с 90% при большей мощности. Но даже 78% несравненно лучше, чем КПД классов В и А — 28 и 3% соответственно. Отличия в КПД и рассеиваемой мощности существенны с точки зрения применения перечисленных усилителей. При уровнях мощности более 1 Вт большие тепловые потери в линейных выходных каскадах приводят к необходимости дополнительных затрат на систему охлаж- дения. Для уровней мощности менее 1 Вт нагрев при диссипации энергии в выходном каскаде не так существенен, но здесь важным становится сам факт бесполезной потери энергии. Если система питается от батареи, то линейные выходные каскады будут разряжать батарею намного быстрее, чем системы с усилителями класса D. Из вышеприведенного примера видно, что система с усилителем класса D потребляет тока в 2,8 раза меньше, чем усилители класса В и в 23,6 раза меньше, чем усилители класса А — в результате получается существенная разница во времени автономной работы таких устройств, как сотовые телефоны, MP3-плееры и «наладонники». До сих пор мы рассматривали только выходной каскад усилителя. Однако, если рассматривать все потребляющие элементы усилительной системы, то линейные усилители становятся более серьезными конкурентами классу D на малых рабочих мощностях. Дело в том, что мощность, которая затрачивается на генерацию и модуляцию импульсного сигнала, относительно велика при малой выходной мощности. Таким образом, суммарные потери хорошо сконструированного усилителя класса АВ при относительно небольшой мощности могут быть примерно такими же, как и потери в усилителе класса D. Но при больших мощностях усилитель класса D имеет неоспоримые преимущества по рассеиваемой мощ- ности.
Сравнение дифференциальной и несимметричной версий
На рисунке 3 изображен дифференциальный вариант включения выходных транзисторов в усилителе класса D с емкостно-индуктивными фильтрами. Полный мост (H-bridge) состоит из двух полумостовых схем (half-bridge), работающих в ключевом режиме, которые подают импульсы противоположной полярности на фильтр, состоящий из двух индуктивностей, двух емкостей и динамика. Каждый из полумостов представляет собой два транзистора: «верхний» MH, подключенный к положительной шине питания, и «нижний» ML, подключенный к отрицательной шине питания. На схемах показано, что в качестве «верхних» применяются транзисторы pMOS. Транзисторы nMOS также часто применяются в качестве «верхних», они позволяют уменьшить размеры и емкость затвора, но для них требуется специальная схема управления [1]. Полные мостовые схемы обычно питают от однополярного источника (VDD), а отрицательный вывод питания (VSS) подключается к «земле». При одинаковых значениях VDD и VSS дифференциальная схема дает выигрыш в размахе сигнала в два раза и в мощности — в четыре раза по сравнению с несимметричной схемой. На шинах питания полумостовой схемы могут возникнуть выбросы напряжения за счет энергии, накопленной в индуктивности LC-фильтра. Скорость нарастания напряжения dV/dt этих переходных процессов может быть ограничена при помощи конденсаторов большой емкости между шинами питания VDD и VSS. Полномостовая схема не имеет такой проблемы, так как ток протекает из одного полумоста в другой, создавая локальную петлю, и, таким образом, этот ток не влияет на напряжение питания.
Особенности усилителей класса D
Малая величина рассеиваемой мощности в усилителях класса D обеспечивает существенные преимущества при их применении в звуковых трактах, однако разработчики непременно столкнутся с необходимостью решения следующих проблем: – выбор выходных транзисторов; – защита выходного каскада; – качество звука; – метод модуляции; – радиопомехи; – разработка LC-фильтра; – высокая стоимость системы.
Выбор выходного транзистора
Размер выходного транзистора выбирается так, чтобы минимизировать потери мощности в широком диапазоне различных значений сигнала. Требование малого значения VDS при пропускании большого тока IDS означает, что выходной транзистор должен иметь малое сопротивление открытого канала RON (около 0,1…0,2 Ом). Но для этого нужен большой транзистор со значительной емкостью затвора CG. Схема, управляющая затвором транзистора и работающая на емкостную нагрузку, потребляет мощность, равную CV2f, где C — емкость затвора, V — изменение напряжения затвора в процессе заряда, f — частота переключения. Эти «потери на переключение» становятся чрезмерными в случае, если емкость или частота переключения велики, поэтому существуют некоторые практические ограничения. Таким образом, выбор транзистора должен осуществляться путем подбора идеального соотношения для минимизации потерь при пропускании тока (минимум произведения IDS VDS) и минимизации потерь на переключение. Потери за счет сопротивления RON преобладают при высоких уровнях мощности, а при низких большее влияние оказывают потери на переключение. Производители транзисторов стремятся минимизировать произведение RON CG в своих приборах, чтобы максимально снизить возможные потери мощности и предоставить инженерам наибольшую свободу в выборе частоты переключения.
Защита выходного каскада
Должна быть предусмотрена защита выходного каскада от различных потенциальных опасностей. Перегрев: тепловые потери в выходных каскадах усилителей класса D хоть и меньше, чем в линейных усилителях, но, тем не менее, могут привести к опасному перегреву выходных транзисторов в случаях, когда усилитель долгое время работает на большой мощности. Для защиты от перегрева применяется цепь контроля температуры. Простейшие из таких схем отключают выходной каскад в случае его нагрева выше пороговой температуры отключения. Температура каскада измеряется встроенным датчиком. Каскад остается отключенным до тех пор, пока он не остынет. С помощью датчика температуры можно не только отключать каскад, но и временно уменьшать уровень громкости при перегреве, снижая тем самым тепловую потерю мощности в каскаде и поддерживая температуру в рабочих пределах. Токовая перегрузка выходных транзисторов: малое сопротивление выходных транзисторов в открытом режиме не создает никаких проблем, если выходной каскад и динамик правильно подключены. Но если выход замкнут накоротко или подключен к положительной или отрицательной шине питания, то в цепи могут протекать очень большие токи. Невнимательность в этом вопросе может привести к повреждению транзисторов или остальной части схемы, поэтому необходимы контроль тока и защита. Простые системы контроля токов отключают каскад при значениях токов выше установленного порога. В более сложных системах реализуется обратная связь, которая настраивает усилитель на работу в безопасном режиме без его отключения. В таких схемах отключение происходит только в крайнем случае, когда система не может настроить усилитель на работу в допустимых пределах. Системы контроля токов позволяют также предохранить от выбросов тока при резонансах в динамике. Понижение напряжения питания: большинство переключающихся выходных каскадов работают хорошо только при достаточно высоком напряжении питания. Проблемы начинаются тогда, когда напряжение питания снижается. Этот момент контролируется системой блокировки, которая позволяет выходным каскадам работать только при напряжении питания выше порогового уровня.
Рис. 6. Схема контроля транзисторов с отключением до включения
Время включения выходного транзистора: верхний (MH) и нижний (ML) (см. рис. 6) выходные транзисторы имеют очень низкое сопротивление в открытом режиме. Поэтому очень важно не допустить ситуации, когда оба выходных транзистора открыты одновременно, так как в этом случае возникнет цепь с малым сопротивлением между VDD и VSS, по которой через оба транзистора потечет большой сквозной ток. В лучшем случае они перегреются и повысятся потери мощности, а в худшем транзисторы выйдут из строя. Система управления транзисторами с отключением и последующим включением предотвращает возможность возникновения сквозного тока, принудительно выключая оба транзистора, прежде чем включить какой-либо из них. Временной интервал, в течение которого оба транзистора отключены, часто называют «мертвым» временем.
Качество звука
Несколько слов стоит сказать о том, как можно добиться качественного звука с использованием усилителей класса D. Щелчки, которые часто случаются при включении/выключении усилителей, отрицательно сказываются на качестве звучания. К сожалению, усилители класса D тоже страдают от этой проблемы, если недостаточно внимательно отнестись к работе модулятора, системы управления выходными транзисторами и индуктивно-емкостного фильтра в режимах включения и выключения усилителя. Отношение сигнал/шум (ОСШ): чтобы не допустить ощутимого влияния собственных шумов усилителя на качество звука, ОСШ должен составлять 90 дБ в маломощных портативных устройствах, 100 дБ в устройствах средней мощности и 110 дБ в мощных системах. Эти показатели достижимы в большинстве схем усилителей, однако конкретные источники шума нужно отслеживать в каждом отдельном случае, чтобы добиться удовлетворительного общего ОСШ. Нелинейные искажения: под нелинейными искажениями имеются в виду не нелинейные эффекты в процессе модуляции, а искажения за счет «мертвого» времени в выходном каскаде, которое необходимо для предотвращения сквозного тока. Основную информацию о звуковом сигнале несет ширина импульсов на выходе модулятора. Необходимость внесения задержки на величину «мертвого» времени приводит к изменению длительности импульса, и это вызывает нелинейные искажения, пропорциональные величине относительной погрешности длительности импульса. Наименьшее «мертвое» время, достаточное для предотвращения пробоя выходного каскада, обеспечивает минимальный уровень нелинейных искажений. В работе [2] подробно описан метод минимизации искажений в переключающихся схемах. Другими источниками шума являются: разница во времени нарастания и спада импульсов, несовпадение временных характеристик выходных транзисторов и нелинейные эффекты в LC-фильтре. Коэффициент ослабления влияния источника питания (PSR): в схеме на рисунке 2 показано, что шумы источника питания передаются напрямую в динамик. Это происходит по причине малого сопротивления транзисторов выходного каскада. ФНЧ эффективно убирает высокочастотную составляющую, но пропускает все звуковые частоты, включая шумы. Подробное описание влияния шумов источника питания в дифференциальных и несимметричных импульсных выходных каскадах содержится в работе [3]. Если целенаправленно не решать проблемы нелинейных искажений или влияния источника питания, то редко удается достичь значения PSR лучшего, чем 10 дБ, или коэффициента гармонических искажений (THD) ниже 0,1%. THD часто является причиной возникновения неприятно звучащих искажений высокого порядка. К счастью, существуют эффективные пути решения этих проблем. Часто помогает применение глубокой обратной связи (как это делается во многих линейных усилителях). Обратная связь со входа LC-фильтра значительно улучшает PSR и ослабляет все искажения и шумы, возникающие до LC-фильтра. Искажения в самом LC-фильтре могут быть ослаблены за счет включения динамика в цепь обратной связи. Качество звука со значениями PSR более 60 дБ и THD менее 0,01% вполне достижимо в тщательно спроектированных усилителях класса D с замкнутой ОС. Однако обратная связь усложняет конструкцию усилителя, так как возникает необходимость обеспечения устойчивости усилителя (нетривиальная задача для цепей высокого порядка). Кроме того, необходима аналоговая обратная связь для отслеживания искажений ширины импульсов, поэтому схема управления должна содержать аналоговую часть для работы с сигналом обратной связи. Для уменьшения стоимости интегральной микросхемы некоторые производители предпочитают урезать аналоговую часть схемы или даже полностью отказываются от нее. В некоторых устройствах используются цифровые модуляторы без обратной связи совместно с АЦП для контроля изменений напряжения питания, и работа модулятора корректируется так, чтобы компенсировать эти изменения [3]. Такой метод позволяет улучшить PSR, но не решает проблемы искажений. В других цифровых модуляторах пытаются заранее компенсировать искажения длительности импульсов или учесть заведомо неидеальные характеристики самого модулятора. Это может частично устранить некоторые причины искажений, но далеко не все. С помощью таких технических приемов добиваются сравнительно неплохого качества звучания на основе усилителей класса D без обратной связи, но для получения лучшего качества звука все-таки необходима обратная связь.
Литература
1. International Rectifier, Application Note AN-978, HV Floating MOS-gate driver ICs. 2. Nyboe F., et al «Time domain analysis of open-loop distortion in class D amplifier output stages», presented at the AES 27-th International Conference, Copenhagen, Denmark, September 2005. 3. Zhang L., et al «Real-time power supply compensation for noise-shaped class D amplifier», presented at the 117-th AES Convention, San-Francisco, CA, October 2004.
Окончание статьи будет опубликовано в «ЭК2», 2008.
ТОП-5: Лучших усилителей для наушников – Рейтинг 2022:
Модель | Описание | |
1. Beyerdynamic A 2 1400$ | Лучший усилитель для наушников до 1500$: высококачественный, класса А; | |
2. Fostex HP-A3 280$ | Лучший ЦАП для наушников до 300$: транзисторный стационарный усилитель; | |
3. Fiio Olympus 2-E10K 80$ | Лучший USB усилитель для наушников до 100$: внешний усилитель Fiio; | |
4. Sennheiser GSX 1000 225$ | Хороший усилитель для наушников от Sennheiser: игровой DAC для компьютера; | |
5. S.M.S.L M6 220$ | Лучший усилитель для наушников до 220$: с Алиэкспресс для ПК; |
5 S.M.S.L M6
Лучший усилитель для наушников до 220$, с Алиэкспресс — для ПК
S.M.S.L M6 – лучший усилитель для наушников до 220$. Классический скромный но приятный дизайн, неплохие возможности по коммутации и отличный за свои деньги звук. Этот ЦАП-усилитель для наушников звучит детально, натурально, можно сказать, винтажно.
Подача довольно мягкая с акцентом на мидбас. Подъём в этом сегменте небольшой, нельзя сказать, что бас что-то закрывает. Разрешение и динамический диапазон показывают, что это далеко не самый простой усилитель наушников для ПК.
- S.M.S.L M6 – лучший усилитель для наушников с Aliexpress
- Рейтинг портативных усилителей для наушников
+ / —