Проверяем на практике бессмысленность высоких частот дискретизации


Частота дискретизации

(или
частота семплирования
, англ.
sample rate
) — частота взятия отсчётов непрерывного по времени сигнала при его дискретизации (в частности, аналого-цифровым преобразователем). Измеряется в герцах.

Термин применяется и при обратном, цифро-аналоговом преобразовании, особенно если частота дискретизации прямого и обратного преобразования выбрана разной (Данный приём, называемый также «Масштабированием времени», встречается, например, при анализе сверхнизкочастотных звуков, издаваемых морскими животными).

Чем выше частота дискретизации, тем более широкий спектр сигнала может быть представлен в дискретном сигнале. Как следует из теоремы Котельникова, для того, чтобы однозначно восстановить исходный сигнал, частота дискретизации должна более чем в два раза превышать наибольшую частоту в спектре сигнала.

Некоторые из используемых частот дискретизации звука [1] :

  • 8 000 Гц — телефон, достаточно для речи, кодек Nellymoser;
  • 11 025 Гц — четверть Audio CD, достаточно для передачи речи;
  • 16 000 Гц;
  • 22 050 Гц — половина Audio CD, достаточно для передачи качества радио;
  • 32 000 Гц;
  • 44 100 Гц — используется в Audio CD. Выбрано Sony из соображений совместимости со стандартом PAL, за счёт записи 3 значений на линию картинки кадра × 588 линий на кадр × 25 кадров в секунду, и достаточности (по теореме Котельникова) для качественного покрытия всего диапазона частот, различаемых человеком на слух (20 Гц — 20 КГц);
  • 48 000 Гц — DVD, DAT;
  • 96 000 Гц — DVD-Audio (MLP 5.1);
  • 192 000 Гц — DVD-Audio (MLP 2.0);
  • 2 822 400 Гц — SACD, процесс однобитной дельта-сигма модуляции, известный как DSD — Direct Stream Digital, совместно разработан компаниями Sony и Philips;
  • 5 644 800 Гц — DSD с удвоенной частотой дискретизации, однобитный Direct Stream Digital с частотой дискретизации вдвое больше, чем у SACD. Используется в некоторых профессиональных устройствах записи DSD.

Что такое Частота Дискретизации (частота сэмплирования)? Что такое Разрядность (битность)?

Когда сигнал поступает на АЦП с предусилителя, компрессора, выхода пульта, синтезатора, — он представляет собой электромагнитные колебания. То есть на вход АЦП приходит некая волна с изменяющимся напряжением очень маленьких величин.

В результате получается график волны на экране компьютера. Даже самый лучший преобразователь имеет погрешность, ведь между нулем и единицей нет промежуточных значений, и график волны будет состоять только из вертикальных и горизонтальных отрезков, без наклонных линий.

На графическую прорисовку волны будут влиять высота звука частота колебаний , его тембр форма волны и громкость амплитуда. Качественный АЦП должен корректно передать системе записи все эти параметры. Итак, звук поступает в систему дискретно , то есть разделенным мелкие отрезки. От величины этих отрезков зависит точность кодирования аналогового сигнала в цифровой среде. Чем мельче горизонтальная и вертикальная дискретные единицы, тем точнее оцифровка.

Горизонтальное дробление волны дает нам представление о частоте дискретизации , или частоте семплирования. Чем чаще АЦП фиксирует изменения значений графика волны, тем выше частота семплирования. Собственно, один семпл — это дискретный единичный отрезок, минимальная единица звука.

Чем он короче, тем выше частота дискретизации. К примеру, значение частоты дискретизации в Каждый семпл по продолжительности равен предыдущему. Для корректного воспроизведения звука частоты дискретизации файла и системы должны быть идентичны. При добавлении в проект звуковой дорожки с частотой дискретизации, отличной от дискретизации хоста программы , она должна быть сконвертирована. Если воспроизводить файл более высокой частоты в системе с более низкой, он будет звучать медленнее, чем должен, и наоборот.

Почему одни звуки красивые, а другие нет?

Здесь почему-то тянет взять серый том Фейнмановских лекций и освежить воспоминания о рядах Фурье — но будем проще: любое колебание можно разложить на несколько колебаний с меньшей длиной волн. Эти меньшие волны — и есть гармоники, и сколько их укладывается в длине основной волны — две, три и т.д. — определяет их четность или нечетность. Как оказалось, нечетные гармоники воспринимаются нашим слухом дискомфортно. Причем вроде все играет правильно, но дискомфорт остается.

Более явный неприятный звук — диссонанс, две частоты, работающие одновременно и вызывающие редкие биения. Если хотите еще наглядней, то нажмите близлежащие черную и белую клавиши на пианино.

Есть и противоположность диссонанса — консонанс. Это сама благозвучность, например, — такой интервал, как октава (удвоение частоты), квинта или кварта. Кроме того, комфортности звучания мешают маскирующие его шумы различной природы, искажения и призвуки.

Ясно, что шум — то, что мешает в принципе. Звуковой мусор. Впрочем, есть и белый шум, этакий эталон шума, в котором присутствуют равномерно все частоты (точнее — спектральные составляющие). Если вы хотите уйти от источника белого шума, то по ходу удаления он будет розоветь. Это происходит потому, что воздух сильнее ослабляет верхние частоты слышимого спектра. Когда их меньше, тогда говорят о розовом шуме.

Чем громче шум по отношению к полезному звуку, тем больше этот звук маскируется шумом. Падает комфортность, а затем — и разборчивость звучания. Это же относится и к нечетным гармоникам, и к нелинейным искажениям, о которых мы еще поговорим более подробно. Все эти явления взаимосвязаны и, самое главное, — все они мешают нам слушать.

Цифровой аудиотракт: апсемплинг и апскейлинг, WASAPI, ASIO и внешний мастер клок для USB-аудио

Но это всего лишь предположение. Ни разу не наткнулся ни на одно устройство, что не поддерживало бы 48 кГц либо не рекомендовало бы использовать 48 кГц по каким-то причинам. Понятное дело, что до написания игры под плейстейшн мне еще далековато, но это не важно. Главное, что я выяснил, что работать надо 48 кГц. Не забывайте также, что олдфагам эти ваши верхние частоты — глубоко до лампочки. Слуховая улитка с возрастом постепенно дохнет, начиная с верхнего конца, и человек теряет диапазон.

1.2. Теорема Котельникова (Nyquist Frequency)

Теорема Котельникова (в англ. литературе более известная как Nyquist Frequency) утверждает, что для корректной передачи и последующего воспроизведения всего спектра частот, содержащегося в сигнале, частота дискретизации должна быть как минимум в два раза больше наивысшей частоты, содержащейся в оцифровываемом сигнале. Так, чтобы на каждый цикл наивысшей частоты приходилось как минимум два замера амплитуды.. То есть, если мы хотим, чтобы наивысшая частота, воспринимаемая человеческим слухом (20 KHz), была корректно воспроизведена, необходимая частота дискретизации должна быть как минимум в два раза больше этой частоты. Таким образом, 20 KHz × 2 будет равняться 40 KHz. В математической форме это известно как теорема Никвиста (Nyquist) и будет выглядить так:

Уважаемый посетитель!

Когда сигнал поступает на АЦП с предусилителя, компрессора, выхода пульта, синтезатора, — он представляет собой электромагнитные колебания. То есть на вход АЦП приходит некая волна с изменяющимся напряжением очень маленьких величин. В результате получается график волны на экране компьютера. Даже самый лучший преобразователь имеет погрешность, ведь между нулем и единицей нет промежуточных значений, и график волны будет состоять только из вертикальных и горизонтальных отрезков, без наклонных линий. На графическую прорисовку волны будут влиять высота звука частота колебаний , его тембр форма волны и громкость амплитуда. Качественный АЦП должен корректно передать системе записи все эти параметры. Итак, звук поступает в систему дискретно , то есть разделенным мелкие отрезки. От величины этих отрезков зависит точность кодирования аналогового сигнала в цифровой среде.

Нота — высота звука и его частота — зависит от специальности

В понимании звука, судя по всему, есть две крайности — понимание звукоинженера и музыканта. Первый говорит «440 Гц!» второй — «нота Ля!». И оба правы. Первый говорит «частота», второй — «высота звука». Впрочем, известно немало отличных музыкантов, которые вовсе не знали нот. При этом специалистов в области акустики, не знающих физических основ в этой области, еще никому не удавалось встретить.

Важно понимать, что оба этих специалиста по-своему занимаются комфортным звучанием. Автор музыкального произведения, инстинктивно, или опираясь на консерваторские знания, строит звук на принципах гармонии, не допуская диссонансов или искажений. Конструктор, создающий колонки, изначально не допускает посторонних призвуков, минимизирует искажения, заботится о равномерности амплитудно-частотной характеристики, динамике и многом, многом другом.

Пишу МП3 диск, какая частота выгоднее 44,1 или 48?

Пара слов о составе, работе и оптимизации цифрового аудиотракта с использованием компьютера и USB. В принципе, тема скучная и букв получилось много, так что если осилить сложно — сразу переходите к выводам. Звуковой сигнал, в общем случае, кодируется последовательностью значений амплитуды сигнала, измеренных через равные промежутки времени.

Не только новичкам, но и некоторым энтузиастам, занимающихся звуком много лет, покажется откровением тот факт, что банальный процесс записи сопровождается сложнейшими физическими явлениями. Одним из таковых называют дискретизацию. Согласно определению, она представляет собой процесс преобразования непрерывной функции в дискретную. Людям, далёким от науки, это понять сложно, тем более, здесь задействована квантовая физика – самая сложная из существующих на сегодняшний день. Но профессиональные звукорежиссёры, например, работающие в московской студии звукозаписи «Интервал», знают, что такое частота дискретизации звука, какая лучше применима в тех или иных случаях. Почему? Потому что от этого явления зависит конечное качество записываемой музыки. В кассетно-плёночный период эти нюансы, ввиду ограниченной технической оснащённости, опускались. Но в современном высокотехнологичном цифровом мире частота дискретизации звука имеет значение при создании музыки и демонстрации её слушателям.

Сравнение форматов передачи данных

Как только Вы определитесь с количеством и комбинацией нужных Вам входов и выходов, тогда уже можно приступать к подбору формата передачи данных, который наилучшим образом подойдет для решения именно Ваших задач.
Самыми старшими из шести основных форматов (PCI, PCMCIA, USB 1.1, USB 2.0, Firewire 400 and Firewire 800) являются PCI и PCMCIA, и, вопреки скептическому мнению многих людей, я лично считаю эти форматы достаточно сильными. Для владельцев ноутбуков PCMCIA карта вообще будет самым компактным решением, в то время как для владельцев PC устанавливаемая внутрь PCI звуковая карта является наиболее распространенным и проверенным вариантом. К тому же в наше время между PCI картами достаточно редки внутренние конфликты. Очень маловероятно, что Вам удастся использовать одновременно три аудио интерфейса с форматами передачи данных USB или Firewire и при этом они не буду конфликтовать.

Преимуществом же USB и Firewire аудио интерфейсов является то, что их можно без труда переносить с одного компьютера на другой, что очень удобно для тех, кто использует и ноутбук, и PC в своей работе. Такие интерфейсы также удобны для тех, кто не хочет лишний раз открывать крышку своего компьютера, или для тех людей, у кого уже не осталось свободных слотов на материнской плате.

Также неоспоримым преимуществом USB и Firewire аудио интерфейсов является возможность «горячего» включение и отключения устройства (без отключения питания компьютера). Однако музыкантам это преимущество не особо важно, потому как при запущенном студийном программном обеспечении «горячее» включение аудио интерфейса все равно ничего не даст, в программе-студии звуковая карта не определится, программу нужно будет перезапускать. Ну а отключение аудио интерфейса до выхода из программы может вообще привести к повисанию компьютера. Также USB и Firewire аудио интерфейсы могут вызывать проблемы с назначением драйверов в программе-студии, вследствие чего треки, назначенные на одну саундкарту, после горячего включения аудио интерфейса могут оказаться назначенными на другую саундкарту.

Кроме того, вообще не рекомендуется «горячее» подключение Firewire. Есть сведения, что у некоторых музыкантов при «горячем» включении сгорали Firewire порты либо на периферийном устройстве, либо на компьютере. И в то время, как Firewire теоретически поддерживает до 63 одновременно включенных устройств, а USB до 127, музыканты обнаружили (за свой счет), что подключение более чем пары устройств в один порт приводит к конфликту оборудования.

Те, кто все же останавливают свой выбор на USB/Firewire, неизбежно сталкиваются с мнениями, слухами, комментариями и фактами, которые окончательно вводят их в заблуждение. Некоторые музыканты считают, что USB абсолютно не подходит для передачи аудио и MIDI сигналов, но по своему опыту я не могу согласиться с этим мнением. В самом начале развития USB у версии 1.1 действительно были некоторые проблемы с передачей данных, но сейчас, работая с USB 2.0, я могу сказать, что передача данных осуществляется очень достоверно.

USB 2.0 не очень крепко утвердился на рынке аудио интерфейсов, так как не многие изготовители внедрили в свою продукцию его поддержку, но в свое время Edirol UA1000 доказал надежность этого формата для передачи многоканального аудио. Однако если Вы хотите внешний аудио интерфейс с поддержкой 24-bit/96kHz и большим количеством каналов, то правильным выбором будет Firewire.

Детализация понятий

Что такое разрядность и частота дискретизации, какая лучше? Ответ на данный вопрос, несмотря на сложность природы этих явлений, получить можно. При этом нет необходимости штудировать учебники по физике. Достаточно вспомнить, что советскими полуподпольными звукорежиссёрами, записывающими рок и другую музыку, эти показатели определялись на интуитивном уровне. Дискретизацию ещё называют сэмплированием. Это определение более понятно для музыкантов. Её частота подразумевает интенсивность процессов в тот момент, когда аналоговый сигнал преобразуется в цифровой. Среди них хранение данных, конвертация, и непосредственно оцифровка.

Частота дискретизации измеряется в герцах. Ориентиром в её изучении является теорема Котельникова. Её автор раскрывает суть дискретизации. Согласно теореме, она ограничивает интенсивность оцифрованного сигнала до половины собственной величины.

Частота дискретизации. В чём её значение для звукозаписи

Дискретизация по времени – это процесс, который непосредственно связан преобразованием аналогового сигнала в цифровой. Наряду с ней происходит квантование данных по амплитуде. Дискретизация по времени означает измерение сигнала в момент всей его передачи. В качестве единицы берётся один сэмпл. Если на словах это не совсем понятно, то на примере выглядит более убедительно. Допустим, частота дискредитации равняется 44100 Гц – та самая, которая применялась на аудио-CD. Это означает, что сигнал измеряется 44100 раз в течение одной секунды.

Аналоговый сигнал по своей насыщенности всегда превосходит цифровой. И его преобразование – это неизбежная потеря в качестве. Частота дискретизации служит своеобразным ориентиром: чем она выше, тем ближе качество цифрового звука к аналоговому. Это явственно просматривается в списке ниже. Он показывает, какая частота звука лучше. Изучая его, вы увидите непосредственную взаимосвязь дискретизации и качества трека:

  • 1. 8000 Гц. Данная частота характерна для телефонных разговоров и записи речи на простой по набору функций диктофон. Используется на звуке, преобразовываемом через кодек Nellymoser.
  • 2. 22050 Гц применяется в радиовещании.
  • 3. 44100Гц. Как уже упоминалось выше, данная частота характерна для Audio CD, и этот показатель долгое время отождествлялся с наиболее высоким уровнем качества. И сегодня формат не утрачивает своих позиций.
  • 4. 48000 Гц. Это форматы DAT и DVD, пришедшие на смену AUDIO.
  • 5. 96000 – DVD-аудио MLP-5,1.
  • 6. 2822 400 ГЦ – высокотехнологичный формат SACD Super Audio.

Список чётко указывает на то, какая частота звука лучше. К тому же технологии на месте не стоят, и появляются новейшие форматы. Но прежде чем строить далеко идущие планы, следует учесть один очень весомый нюанс. Его суть проста: чем выше частота дискретизации, тем сложнее её достичь технологически. Для этого необходимо:

  • обеспечить высокую интенсивность передачи цифровых потоков. А это возможно далеко не на каждом интерфейсе. И чем больше каналов задействовано в записи (а это характерно для музыкальных ансамблей), тем процесс сложнее;
  • иметь на вооружении процессор, способный производить мощные вычислительные операции. Но даже в самых современных образцах возможности для получения звука сверхвысокого качества ограничены;
  • использовать для записи компьютерную технику, обладающую большим объёмом оперативной памяти.

Учитывая вышеизложенную информацию, неудивительным является тот факт, что частота звука, равная 44100 Гц, продолжает оставаться наиболее востребованной и сегодня. Она десятилетиями удовлетворяет даже самые взыскательные запросы к качеству, и вместе с тем имеются все технические возможности для её достижения. Последний фактор является определяющим как для рядовых пользователей, так и для большинства звукозаписывающих студий. Даже зная, какая частота звука лучше, чтобы достигнуть её, необходимо позаботиться о технической оснащённости.

Громкость, звуковое давление — пределы и ориентиры

С громкостью все не так просто. Она относительна. Подумайте сами, ведь абсолютной тишины не существует. То есть, она в природе есть, но попадание в такое место превращается в пытку — вы начинаете слышать стук своего сердца, звон в ушах — все равно тишина исчезает.

Поэтому звуковое давление измеряется относительно некоего нулевого уровня в децибелах (дБ). Это логарифмические единицы, ведь логарифмическая шкала наиболее точно соответствует природе слуха. Если немного углубиться в теорию, нужно вспомнить эмпирически установленный закон психофизиологии Вебера-Фехнера, который описывает работу органов чувств. Согласно этому закону, интенсивность ощущения чего-либо прямо пропорциональна логарифму интенсивности раздражителя. В случае звука, это — амплитуда (размах) колебаний.

И если за ноль децибел принять порог слышимости (а это, повторимся, не тишина!), то шелест листьев дает 10 дБ, поезд метро — 100 дБ, истребитель на форсаже — 125 дБ, и ненамного меньше, кстати, выдала одна девчушка, призер соревнований по громкости крика в США. В дискотечном зале громкость может достигать 130 дБ. Это при том, что 120 дБ — уже больно, а 180 — могут убить.

Разница приблизительно в шесть децибел воспринимается нами, как удвоение громкости. Добавление трех децибел на низкой частоте требует удвоения амплитуды колебаний источника звука, но на слух это замечает не каждый слушатель! Такие вот парадоксальные, на первый взгляд, данные.

Вроде все нормально, так чего же тут не так?

Начнем с частот, кратных частоте дискретизации. На частоте 441 Герц при нашей частоте дискретизации (44.1 кГц), на один период приходится 100 точек. Чтож, тут нет никаких претензий, синусоида идеальная. Если же повысить частоту на порядок, т.е. в 10 раз, то эти же 100 точек будут формировать уже не 1, а 10 периодов. И даже в этом случае Будет формироваться сигнал очень похожий на синусоиду.

А вот на частоте 22050, т.е. наивысшей частоте, удовлетворяющей теореме Котельникова (при частоте дискретизации 44.1кГц) на 100 точек приходится 50 периодов колебаний.

Эти сигналы генерировались в программе Audacity. И по началу создалось впечатление, что точек там достаточно, просто масштаб не позволяет разглядеть и поэтому так все угловато…

Чтож… приблизим и рассмотрим каждый период по отдельности:

Частота в 4410 Гц вполне себе достойная синусоида, чего никак не скажешь о частоте 22050Гц, с ее двумя точками на период. По факту это уже и не синусоида, а сигнал треугольной формы.

Конечно в любом реальном ЦАПе на выходе применяется НЧ-фильт, который срезает высокочастотную составляющую и скругляет этот треугольник. Однако чем выше класс вашего аудио устройства, тем заметнее будет угловатость звука

Ради эксперимента можете попробовать сгенерировать в Audcity сигналы одной и той же частоты но разных форм. У треугольной и прямоугольной форм из-за их “угловатости” и резких фронтов возникают дополнительные гармоники, а вот синусоидальный сигнал звучит гораздо более мягко и естественно.

Но даже и это не самое страшное. До этого момента рассматривались сигналы с частотами кратными частоте дискретизации.

Бит глубина

Битовая глубина определяет динамический диапазон. При дискретизации звуковых волн укажите значение амплитуды, наиболее близкое к исходной амплитуде звуковой волны для каждого сэмпла. Более высокая битовая глубина может обеспечить более возможные значения амплитуды, в результате чего в более широком диапазоне динамического, нижний опорный шумовой и более высокую точность.

Бит глубинаУровень качестваЗначение амплитудыДинамический диапазон
8 битТелефон25648 dB
16 битАудио CD65,53696 dB
24 битаАудио DVD16,777,216144 dB
32 битоптимальный4,294,967,296192 dB

Чем выше битовая глубина, тем больше обеспечен динамический диапазон.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]